Loading…
A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning
This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-01, Vol.23 (3), p.1533 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73 |
container_end_page | |
container_issue | 3 |
container_start_page | 1533 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 23 |
creator | Soto, Ismael Zamorano-Illanes, Raul Becerra, Raimundo Palacios Játiva, Pablo Azurdia-Meza, Cesar A Alavia, Wilson García, Verónica Ijaz, Muhammad Zabala-Blanco, David |
description | This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values. |
doi_str_mv | 10.3390/s23031533 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3bb942b1766a4a39be25d2afbcc32d52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743369178</galeid><doaj_id>oai_doaj_org_article_3bb942b1766a4a39be25d2afbcc32d52</doaj_id><sourcerecordid>A743369178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73</originalsourceid><addsrcrecordid>eNptkktvEzEQgFcIREvhwB9AK3GBQ1q_1t49obDlEZFQIaBXa9aeTRzt2u1604p_j9OU0CDkg-3xN581o8myl5Sccl6Rs8g44bTg_FF2TAUTk5Ix8vjB-Sh7FuOaEMY5L59mR1wqxQoljjOY5l_xNq8vLmfnE1rl5ziiGV3w-QLHVbD5e4ho83Svv385-zZd5JcuuqbDfO6WqzGvQ99vvDNwlwPe5gswK-fTO8LgnV8-z5600EV8cb-fZD8_fvhRf57MLz7N6ul8YgquxglIQYuSEyJa2oJAJRhVgpBWAAK1olCESVI2lqBsK0OJpGgLlIBoWtUofpLNdl4bYK2vBtfD8EsHcPouEIalhmF0pkPNm6YSrKFKShDAqwZZYRm0jTGc2YIl17ud62rT9GgN-nGA7kB6-OLdSi_DjaaElWUlaDK8uTcM4XqDcdS9iwa7DjyGTdRMqUIyVgie0Nf_oOuwGXzq1ZYSlWJC0r_UElIFzrchfWy2Uj1VySIrqspEnf6HSsti70zw2LoUP0h4u0swQ4hxwHZfJCV6O1x6P1yJffWwK3vyzzTx39A4xQg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774972461</pqid></control><display><type>article</type><title>A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Soto, Ismael ; Zamorano-Illanes, Raul ; Becerra, Raimundo ; Palacios Játiva, Pablo ; Azurdia-Meza, Cesar A ; Alavia, Wilson ; García, Verónica ; Ijaz, Muhammad ; Zabala-Blanco, David</creator><creatorcontrib>Soto, Ismael ; Zamorano-Illanes, Raul ; Becerra, Raimundo ; Palacios Játiva, Pablo ; Azurdia-Meza, Cesar A ; Alavia, Wilson ; García, Verónica ; Ijaz, Muhammad ; Zabala-Blanco, David</creatorcontrib><description>This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23031533</identifier><identifier>PMID: 36772574</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Analysis ; Art techniques ; Artificial intelligence ; BER ; Communication ; Communication channels ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; CSK ; Disease transmission ; Dust ; Electrophoresis ; Epidemics ; Health aspects ; Hospitals ; Humans ; Light ; Machine Learning ; Methods ; Mining ; Nucleic acids ; Optical communication ; Pandemics ; Particle size ; Pathogens ; Public health ; QAM ; Severe acute respiratory syndrome coronavirus 2 ; Signal processing ; Vaccines ; VLC ; Wireless communications</subject><ispartof>Sensors (Basel, Switzerland), 2023-01, Vol.23 (3), p.1533</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73</citedby><cites>FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73</cites><orcidid>0000-0001-5674-8489 ; 0000-0002-5501-5651 ; 0000-0002-0050-9435 ; 0000-0002-3958-503X ; 0000-0003-3461-4484 ; 0000-0002-3995-697X ; 0000-0002-5692-5673 ; 0000-0002-5312-925X ; 0000-0003-1590-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774972461?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774972461?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,38514,43893,44588,53789,53791,74182,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36772574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soto, Ismael</creatorcontrib><creatorcontrib>Zamorano-Illanes, Raul</creatorcontrib><creatorcontrib>Becerra, Raimundo</creatorcontrib><creatorcontrib>Palacios Játiva, Pablo</creatorcontrib><creatorcontrib>Azurdia-Meza, Cesar A</creatorcontrib><creatorcontrib>Alavia, Wilson</creatorcontrib><creatorcontrib>García, Verónica</creatorcontrib><creatorcontrib>Ijaz, Muhammad</creatorcontrib><creatorcontrib>Zabala-Blanco, David</creatorcontrib><title>A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Art techniques</subject><subject>Artificial intelligence</subject><subject>BER</subject><subject>Communication</subject><subject>Communication channels</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>CSK</subject><subject>Disease transmission</subject><subject>Dust</subject><subject>Electrophoresis</subject><subject>Epidemics</subject><subject>Health aspects</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Light</subject><subject>Machine Learning</subject><subject>Methods</subject><subject>Mining</subject><subject>Nucleic acids</subject><subject>Optical communication</subject><subject>Pandemics</subject><subject>Particle size</subject><subject>Pathogens</subject><subject>Public health</subject><subject>QAM</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Signal processing</subject><subject>Vaccines</subject><subject>VLC</subject><subject>Wireless communications</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktvEzEQgFcIREvhwB9AK3GBQ1q_1t49obDlEZFQIaBXa9aeTRzt2u1604p_j9OU0CDkg-3xN581o8myl5Sccl6Rs8g44bTg_FF2TAUTk5Ix8vjB-Sh7FuOaEMY5L59mR1wqxQoljjOY5l_xNq8vLmfnE1rl5ziiGV3w-QLHVbD5e4ho83Svv385-zZd5JcuuqbDfO6WqzGvQ99vvDNwlwPe5gswK-fTO8LgnV8-z5600EV8cb-fZD8_fvhRf57MLz7N6ul8YgquxglIQYuSEyJa2oJAJRhVgpBWAAK1olCESVI2lqBsK0OJpGgLlIBoWtUofpLNdl4bYK2vBtfD8EsHcPouEIalhmF0pkPNm6YSrKFKShDAqwZZYRm0jTGc2YIl17ud62rT9GgN-nGA7kB6-OLdSi_DjaaElWUlaDK8uTcM4XqDcdS9iwa7DjyGTdRMqUIyVgie0Nf_oOuwGXzq1ZYSlWJC0r_UElIFzrchfWy2Uj1VySIrqspEnf6HSsti70zw2LoUP0h4u0swQ4hxwHZfJCV6O1x6P1yJffWwK3vyzzTx39A4xQg</recordid><startdate>20230130</startdate><enddate>20230130</enddate><creator>Soto, Ismael</creator><creator>Zamorano-Illanes, Raul</creator><creator>Becerra, Raimundo</creator><creator>Palacios Játiva, Pablo</creator><creator>Azurdia-Meza, Cesar A</creator><creator>Alavia, Wilson</creator><creator>García, Verónica</creator><creator>Ijaz, Muhammad</creator><creator>Zabala-Blanco, David</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5674-8489</orcidid><orcidid>https://orcid.org/0000-0002-5501-5651</orcidid><orcidid>https://orcid.org/0000-0002-0050-9435</orcidid><orcidid>https://orcid.org/0000-0002-3958-503X</orcidid><orcidid>https://orcid.org/0000-0003-3461-4484</orcidid><orcidid>https://orcid.org/0000-0002-3995-697X</orcidid><orcidid>https://orcid.org/0000-0002-5692-5673</orcidid><orcidid>https://orcid.org/0000-0002-5312-925X</orcidid><orcidid>https://orcid.org/0000-0003-1590-9877</orcidid></search><sort><creationdate>20230130</creationdate><title>A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning</title><author>Soto, Ismael ; Zamorano-Illanes, Raul ; Becerra, Raimundo ; Palacios Játiva, Pablo ; Azurdia-Meza, Cesar A ; Alavia, Wilson ; García, Verónica ; Ijaz, Muhammad ; Zabala-Blanco, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Art techniques</topic><topic>Artificial intelligence</topic><topic>BER</topic><topic>Communication</topic><topic>Communication channels</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>CSK</topic><topic>Disease transmission</topic><topic>Dust</topic><topic>Electrophoresis</topic><topic>Epidemics</topic><topic>Health aspects</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Light</topic><topic>Machine Learning</topic><topic>Methods</topic><topic>Mining</topic><topic>Nucleic acids</topic><topic>Optical communication</topic><topic>Pandemics</topic><topic>Particle size</topic><topic>Pathogens</topic><topic>Public health</topic><topic>QAM</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Signal processing</topic><topic>Vaccines</topic><topic>VLC</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soto, Ismael</creatorcontrib><creatorcontrib>Zamorano-Illanes, Raul</creatorcontrib><creatorcontrib>Becerra, Raimundo</creatorcontrib><creatorcontrib>Palacios Játiva, Pablo</creatorcontrib><creatorcontrib>Azurdia-Meza, Cesar A</creatorcontrib><creatorcontrib>Alavia, Wilson</creatorcontrib><creatorcontrib>García, Verónica</creatorcontrib><creatorcontrib>Ijaz, Muhammad</creatorcontrib><creatorcontrib>Zabala-Blanco, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soto, Ismael</au><au>Zamorano-Illanes, Raul</au><au>Becerra, Raimundo</au><au>Palacios Játiva, Pablo</au><au>Azurdia-Meza, Cesar A</au><au>Alavia, Wilson</au><au>García, Verónica</au><au>Ijaz, Muhammad</au><au>Zabala-Blanco, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-01-30</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><spage>1533</spage><pages>1533-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36772574</pmid><doi>10.3390/s23031533</doi><orcidid>https://orcid.org/0000-0001-5674-8489</orcidid><orcidid>https://orcid.org/0000-0002-5501-5651</orcidid><orcidid>https://orcid.org/0000-0002-0050-9435</orcidid><orcidid>https://orcid.org/0000-0002-3958-503X</orcidid><orcidid>https://orcid.org/0000-0003-3461-4484</orcidid><orcidid>https://orcid.org/0000-0002-3995-697X</orcidid><orcidid>https://orcid.org/0000-0002-5692-5673</orcidid><orcidid>https://orcid.org/0000-0002-5312-925X</orcidid><orcidid>https://orcid.org/0000-0003-1590-9877</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-01, Vol.23 (3), p.1533 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3bb942b1766a4a39be25d2afbcc32d52 |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | Algorithms Analysis Art techniques Artificial intelligence BER Communication Communication channels Coronaviruses COVID-19 COVID-19 - diagnosis CSK Disease transmission Dust Electrophoresis Epidemics Health aspects Hospitals Humans Light Machine Learning Methods Mining Nucleic acids Optical communication Pandemics Particle size Pathogens Public health QAM Severe acute respiratory syndrome coronavirus 2 Signal processing Vaccines VLC Wireless communications |
title | A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20COVID-19%20Detection%20Method%20Based%20on%20CSK/QAM%20Visible%20Light%20Communication%20and%20Machine%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Soto,%20Ismael&rft.date=2023-01-30&rft.volume=23&rft.issue=3&rft.spage=1533&rft.pages=1533-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23031533&rft_dat=%3Cgale_doaj_%3EA743369178%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774972461&rft_id=info:pmid/36772574&rft_galeid=A743369178&rfr_iscdi=true |