Loading…

A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning

This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-01, Vol.23 (3), p.1533
Main Authors: Soto, Ismael, Zamorano-Illanes, Raul, Becerra, Raimundo, Palacios Játiva, Pablo, Azurdia-Meza, Cesar A, Alavia, Wilson, García, Verónica, Ijaz, Muhammad, Zabala-Blanco, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73
cites cdi_FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73
container_end_page
container_issue 3
container_start_page 1533
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Soto, Ismael
Zamorano-Illanes, Raul
Becerra, Raimundo
Palacios Játiva, Pablo
Azurdia-Meza, Cesar A
Alavia, Wilson
García, Verónica
Ijaz, Muhammad
Zabala-Blanco, David
description This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.
doi_str_mv 10.3390/s23031533
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3bb942b1766a4a39be25d2afbcc32d52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743369178</galeid><doaj_id>oai_doaj_org_article_3bb942b1766a4a39be25d2afbcc32d52</doaj_id><sourcerecordid>A743369178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73</originalsourceid><addsrcrecordid>eNptkktvEzEQgFcIREvhwB9AK3GBQ1q_1t49obDlEZFQIaBXa9aeTRzt2u1604p_j9OU0CDkg-3xN581o8myl5Sccl6Rs8g44bTg_FF2TAUTk5Ix8vjB-Sh7FuOaEMY5L59mR1wqxQoljjOY5l_xNq8vLmfnE1rl5ziiGV3w-QLHVbD5e4ho83Svv385-zZd5JcuuqbDfO6WqzGvQ99vvDNwlwPe5gswK-fTO8LgnV8-z5600EV8cb-fZD8_fvhRf57MLz7N6ul8YgquxglIQYuSEyJa2oJAJRhVgpBWAAK1olCESVI2lqBsK0OJpGgLlIBoWtUofpLNdl4bYK2vBtfD8EsHcPouEIalhmF0pkPNm6YSrKFKShDAqwZZYRm0jTGc2YIl17ud62rT9GgN-nGA7kB6-OLdSi_DjaaElWUlaDK8uTcM4XqDcdS9iwa7DjyGTdRMqUIyVgie0Nf_oOuwGXzq1ZYSlWJC0r_UElIFzrchfWy2Uj1VySIrqspEnf6HSsti70zw2LoUP0h4u0swQ4hxwHZfJCV6O1x6P1yJffWwK3vyzzTx39A4xQg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774972461</pqid></control><display><type>article</type><title>A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Soto, Ismael ; Zamorano-Illanes, Raul ; Becerra, Raimundo ; Palacios Játiva, Pablo ; Azurdia-Meza, Cesar A ; Alavia, Wilson ; García, Verónica ; Ijaz, Muhammad ; Zabala-Blanco, David</creator><creatorcontrib>Soto, Ismael ; Zamorano-Illanes, Raul ; Becerra, Raimundo ; Palacios Játiva, Pablo ; Azurdia-Meza, Cesar A ; Alavia, Wilson ; García, Verónica ; Ijaz, Muhammad ; Zabala-Blanco, David</creatorcontrib><description>This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23031533</identifier><identifier>PMID: 36772574</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Analysis ; Art techniques ; Artificial intelligence ; BER ; Communication ; Communication channels ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; CSK ; Disease transmission ; Dust ; Electrophoresis ; Epidemics ; Health aspects ; Hospitals ; Humans ; Light ; Machine Learning ; Methods ; Mining ; Nucleic acids ; Optical communication ; Pandemics ; Particle size ; Pathogens ; Public health ; QAM ; Severe acute respiratory syndrome coronavirus 2 ; Signal processing ; Vaccines ; VLC ; Wireless communications</subject><ispartof>Sensors (Basel, Switzerland), 2023-01, Vol.23 (3), p.1533</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73</citedby><cites>FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73</cites><orcidid>0000-0001-5674-8489 ; 0000-0002-5501-5651 ; 0000-0002-0050-9435 ; 0000-0002-3958-503X ; 0000-0003-3461-4484 ; 0000-0002-3995-697X ; 0000-0002-5692-5673 ; 0000-0002-5312-925X ; 0000-0003-1590-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774972461?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774972461?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,38514,43893,44588,53789,53791,74182,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36772574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soto, Ismael</creatorcontrib><creatorcontrib>Zamorano-Illanes, Raul</creatorcontrib><creatorcontrib>Becerra, Raimundo</creatorcontrib><creatorcontrib>Palacios Játiva, Pablo</creatorcontrib><creatorcontrib>Azurdia-Meza, Cesar A</creatorcontrib><creatorcontrib>Alavia, Wilson</creatorcontrib><creatorcontrib>García, Verónica</creatorcontrib><creatorcontrib>Ijaz, Muhammad</creatorcontrib><creatorcontrib>Zabala-Blanco, David</creatorcontrib><title>A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Art techniques</subject><subject>Artificial intelligence</subject><subject>BER</subject><subject>Communication</subject><subject>Communication channels</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>CSK</subject><subject>Disease transmission</subject><subject>Dust</subject><subject>Electrophoresis</subject><subject>Epidemics</subject><subject>Health aspects</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Light</subject><subject>Machine Learning</subject><subject>Methods</subject><subject>Mining</subject><subject>Nucleic acids</subject><subject>Optical communication</subject><subject>Pandemics</subject><subject>Particle size</subject><subject>Pathogens</subject><subject>Public health</subject><subject>QAM</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Signal processing</subject><subject>Vaccines</subject><subject>VLC</subject><subject>Wireless communications</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktvEzEQgFcIREvhwB9AK3GBQ1q_1t49obDlEZFQIaBXa9aeTRzt2u1604p_j9OU0CDkg-3xN581o8myl5Sccl6Rs8g44bTg_FF2TAUTk5Ix8vjB-Sh7FuOaEMY5L59mR1wqxQoljjOY5l_xNq8vLmfnE1rl5ziiGV3w-QLHVbD5e4ho83Svv385-zZd5JcuuqbDfO6WqzGvQ99vvDNwlwPe5gswK-fTO8LgnV8-z5600EV8cb-fZD8_fvhRf57MLz7N6ul8YgquxglIQYuSEyJa2oJAJRhVgpBWAAK1olCESVI2lqBsK0OJpGgLlIBoWtUofpLNdl4bYK2vBtfD8EsHcPouEIalhmF0pkPNm6YSrKFKShDAqwZZYRm0jTGc2YIl17ud62rT9GgN-nGA7kB6-OLdSi_DjaaElWUlaDK8uTcM4XqDcdS9iwa7DjyGTdRMqUIyVgie0Nf_oOuwGXzq1ZYSlWJC0r_UElIFzrchfWy2Uj1VySIrqspEnf6HSsti70zw2LoUP0h4u0swQ4hxwHZfJCV6O1x6P1yJffWwK3vyzzTx39A4xQg</recordid><startdate>20230130</startdate><enddate>20230130</enddate><creator>Soto, Ismael</creator><creator>Zamorano-Illanes, Raul</creator><creator>Becerra, Raimundo</creator><creator>Palacios Játiva, Pablo</creator><creator>Azurdia-Meza, Cesar A</creator><creator>Alavia, Wilson</creator><creator>García, Verónica</creator><creator>Ijaz, Muhammad</creator><creator>Zabala-Blanco, David</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5674-8489</orcidid><orcidid>https://orcid.org/0000-0002-5501-5651</orcidid><orcidid>https://orcid.org/0000-0002-0050-9435</orcidid><orcidid>https://orcid.org/0000-0002-3958-503X</orcidid><orcidid>https://orcid.org/0000-0003-3461-4484</orcidid><orcidid>https://orcid.org/0000-0002-3995-697X</orcidid><orcidid>https://orcid.org/0000-0002-5692-5673</orcidid><orcidid>https://orcid.org/0000-0002-5312-925X</orcidid><orcidid>https://orcid.org/0000-0003-1590-9877</orcidid></search><sort><creationdate>20230130</creationdate><title>A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning</title><author>Soto, Ismael ; Zamorano-Illanes, Raul ; Becerra, Raimundo ; Palacios Játiva, Pablo ; Azurdia-Meza, Cesar A ; Alavia, Wilson ; García, Verónica ; Ijaz, Muhammad ; Zabala-Blanco, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Art techniques</topic><topic>Artificial intelligence</topic><topic>BER</topic><topic>Communication</topic><topic>Communication channels</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>CSK</topic><topic>Disease transmission</topic><topic>Dust</topic><topic>Electrophoresis</topic><topic>Epidemics</topic><topic>Health aspects</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Light</topic><topic>Machine Learning</topic><topic>Methods</topic><topic>Mining</topic><topic>Nucleic acids</topic><topic>Optical communication</topic><topic>Pandemics</topic><topic>Particle size</topic><topic>Pathogens</topic><topic>Public health</topic><topic>QAM</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Signal processing</topic><topic>Vaccines</topic><topic>VLC</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soto, Ismael</creatorcontrib><creatorcontrib>Zamorano-Illanes, Raul</creatorcontrib><creatorcontrib>Becerra, Raimundo</creatorcontrib><creatorcontrib>Palacios Játiva, Pablo</creatorcontrib><creatorcontrib>Azurdia-Meza, Cesar A</creatorcontrib><creatorcontrib>Alavia, Wilson</creatorcontrib><creatorcontrib>García, Verónica</creatorcontrib><creatorcontrib>Ijaz, Muhammad</creatorcontrib><creatorcontrib>Zabala-Blanco, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soto, Ismael</au><au>Zamorano-Illanes, Raul</au><au>Becerra, Raimundo</au><au>Palacios Játiva, Pablo</au><au>Azurdia-Meza, Cesar A</au><au>Alavia, Wilson</au><au>García, Verónica</au><au>Ijaz, Muhammad</au><au>Zabala-Blanco, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-01-30</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><spage>1533</spage><pages>1533-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36772574</pmid><doi>10.3390/s23031533</doi><orcidid>https://orcid.org/0000-0001-5674-8489</orcidid><orcidid>https://orcid.org/0000-0002-5501-5651</orcidid><orcidid>https://orcid.org/0000-0002-0050-9435</orcidid><orcidid>https://orcid.org/0000-0002-3958-503X</orcidid><orcidid>https://orcid.org/0000-0003-3461-4484</orcidid><orcidid>https://orcid.org/0000-0002-3995-697X</orcidid><orcidid>https://orcid.org/0000-0002-5692-5673</orcidid><orcidid>https://orcid.org/0000-0002-5312-925X</orcidid><orcidid>https://orcid.org/0000-0003-1590-9877</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-01, Vol.23 (3), p.1533
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3bb942b1766a4a39be25d2afbcc32d52
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects Algorithms
Analysis
Art techniques
Artificial intelligence
BER
Communication
Communication channels
Coronaviruses
COVID-19
COVID-19 - diagnosis
CSK
Disease transmission
Dust
Electrophoresis
Epidemics
Health aspects
Hospitals
Humans
Light
Machine Learning
Methods
Mining
Nucleic acids
Optical communication
Pandemics
Particle size
Pathogens
Public health
QAM
Severe acute respiratory syndrome coronavirus 2
Signal processing
Vaccines
VLC
Wireless communications
title A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20COVID-19%20Detection%20Method%20Based%20on%20CSK/QAM%20Visible%20Light%20Communication%20and%20Machine%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Soto,%20Ismael&rft.date=2023-01-30&rft.volume=23&rft.issue=3&rft.spage=1533&rft.pages=1533-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23031533&rft_dat=%3Cgale_doaj_%3EA743369178%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-a641583004f1fa4e74217400f4aea1d45702608bd0e6f9c1061ed5e6aeecf7b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774972461&rft_id=info:pmid/36772574&rft_galeid=A743369178&rfr_iscdi=true