Loading…

Study of the Hemodynamics Effects of an Isolated Systolic Hypertension (ISH) Condition on Cerebral Aneurysms Models, Using FSI Simulations

Hemodynamics is recognized as a relevant factor in the development and rupture of cerebral aneurysms, so further studies related to different physiological conditions in human represent an advance in understanding the pathology and rupture risk. In this paper, Fluid-structure interaction simulations...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-03, Vol.11 (6), p.2595
Main Authors: Barahona, José, Valencia, Alvaro, Torres, María
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hemodynamics is recognized as a relevant factor in the development and rupture of cerebral aneurysms, so further studies related to different physiological conditions in human represent an advance in understanding the pathology and rupture risk. In this paper, Fluid-structure interaction simulations (FSI) were carried out in six models of cerebral aneurysms, in order to study the hemodynamics effects of an isolated systolic hypertension (ISH) condition and compare it to a normal or normotensive pressure condition and a higher hypertension condition. Interestingly, the ISH condition showed, in general, the greatest hemodynamics changes, evidenced in the Time-Averaged Wall Shear Stress (TAWSS), Oscillatory Shear Index (OSI), and Relative Residence Time (RRT) parameters, with respect to a normal condition. These results could imply that a not high-pressure condition (ISH), characterized with a different shape and an abrupt change in its diastolic and systolic range may present more adverse hemodynamic changes compared to a higher-pressure condition (such as a hypertensive condition) and therefore have a greater incidence on the arterial wall remodeling and rupture risk.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11062595