Loading…

Three- and Multi-Phase Extraction as a Tool for the Implementation of Liquid Membrane Separation Methods in Practice

To promote the implementation of liquid membrane separations in industry, we have previously proposed extraction methods called three- and multi-phase extraction. The three-phase multi-stage extraction is carried out in a cascade of bulk liquid membrane separation stages, each comprising two interco...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) 2022-09, Vol.12 (10), p.926
Main Authors: Kostanyan, Artak E., Belova, Vera V., Voshkin, Andrey A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To promote the implementation of liquid membrane separations in industry, we have previously proposed extraction methods called three- and multi-phase extraction. The three-phase multi-stage extraction is carried out in a cascade of bulk liquid membrane separation stages, each comprising two interconnected (extraction and stripping) chambers. The organic liquid membrane phase recycles between the chambers within the same stage. In multi-phase extraction, each separation stage includes a scrubbing chamber, located between the extraction and stripping chambers. The three- and multi-phase multi-stage extraction technique can be realized either in a series of mixer–settler extractors or in special two- or multi-chamber extraction apparatuses, in which the convective circulation of continuous membrane phase between the chambers takes place due to the difference in emulsion density in the chambers. The results of an experimental study of the extraction of phenol from sulfuric acid solutions in the three-phase extractors with convective circulation of continuous membrane phase are presented. Butyl acetate was used as an extractant. The stripping of phenol from the organic phase was carried out with 5–12% NaOH aqueous solutions. The prospects of using three-phase extractors for wastewater treatment from phenol are shown. An increase in the efficiency of three-phase extraction can be achieved by carrying out the process in a cascade of three-phase apparatuses.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes12100926