Loading…
Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites
In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. T...
Saved in:
Published in: | Toxics (Basel) 2021-12, Vol.9 (12), p.330 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203 |
container_end_page | |
container_issue | 12 |
container_start_page | 330 |
container_title | Toxics (Basel) |
container_volume | 9 |
creator | Louros, Vitória Ferreira, Liliana Silva, Valentina Silva, Carla Martins, Manuel Otero, Marta Esteves, Valdemar Lima, Diana |
description | In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‰, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ’s half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation. |
doi_str_mv | 10.3390/toxics9120330 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3bce26c1d17e4a2394830d5d4a23cae0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3bce26c1d17e4a2394830d5d4a23cae0</doaj_id><sourcerecordid>2612837755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203</originalsourceid><addsrcrecordid>eNpdkUtvEzEQgC0EolXpkftKXLgs-P24IEXhVamiILVny2vPpo4269T2VvDvcUiFCL545Pn8zdiD0GuC3zFm8PuafkZfDKGYMfwMnVOGRS8Z5s__ic_QZSlb3JYhTEv5Ep0xbjhRkp2jH9_vU00BNtkFV2OauzR2q4fF-WWqS4ZuNdc4xFRbne6uxHnTrV0eGvcx1dLfxhvafXNz8mm3TyVWKK_Qi9FNBS6f9gt09_nT7fprf33z5Wq9uu49F7r2g6MsBKkkYUYb6iRgSYwGp7HgYhSeKaMdAFWCSc5DoFLAKIYRt7xrD75AV0dvSG5r9znuXP5lk4v2z0HKG-tya3sCywYPVHoSiIJ2lxmuGQ4iHGLv4OD6cHTtl2EHwcNcs5tOpKeZOd7bTXq0WmGOpW6Ct0-CnB4WKNXuYvEwTW6GtBRLJeGUGq5MQ9_8h27Tkuf2VQeKaqaUEI3qj5TPqZQM499mCLaH2duT2bPfux2g3w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612837755</pqid></control><display><type>article</type><title>Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Louros, Vitória ; Ferreira, Liliana ; Silva, Valentina ; Silva, Carla ; Martins, Manuel ; Otero, Marta ; Esteves, Valdemar ; Lima, Diana</creator><creatorcontrib>Louros, Vitória ; Ferreira, Liliana ; Silva, Valentina ; Silva, Carla ; Martins, Manuel ; Otero, Marta ; Esteves, Valdemar ; Lima, Diana</creatorcontrib><description>In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‰, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ’s half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.</description><identifier>ISSN: 2305-6304</identifier><identifier>EISSN: 2305-6304</identifier><identifier>DOI: 10.3390/toxics9120330</identifier><identifier>PMID: 34941763</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antibiotics ; Aquaculture ; Aquaculture effluents ; aquaculture industry ; Carbon ; Carbon dots ; Citric acid ; Effluents ; Glycerol ; Half-life ; Irradiation ; Marine aquaculture ; Nanocomposites ; Nanoparticles ; Oxolinic acid ; Photocatalysis ; Photocatalysts ; Photodegradation ; Quantum dots ; Radiation ; Radioactive half-life ; Salts ; Solar radiation ; Sulfadiazine ; Synthesis ; Titanium ; Titanium dioxide ; water treatment</subject><ispartof>Toxics (Basel), 2021-12, Vol.9 (12), p.330</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203</citedby><cites>FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203</cites><orcidid>0000-0003-4093-1814 ; 0000-0002-8539-4787 ; 0000-0001-5218-0726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612837755/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612837755?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Louros, Vitória</creatorcontrib><creatorcontrib>Ferreira, Liliana</creatorcontrib><creatorcontrib>Silva, Valentina</creatorcontrib><creatorcontrib>Silva, Carla</creatorcontrib><creatorcontrib>Martins, Manuel</creatorcontrib><creatorcontrib>Otero, Marta</creatorcontrib><creatorcontrib>Esteves, Valdemar</creatorcontrib><creatorcontrib>Lima, Diana</creatorcontrib><title>Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites</title><title>Toxics (Basel)</title><description>In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‰, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ’s half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.</description><subject>Antibiotics</subject><subject>Aquaculture</subject><subject>Aquaculture effluents</subject><subject>aquaculture industry</subject><subject>Carbon</subject><subject>Carbon dots</subject><subject>Citric acid</subject><subject>Effluents</subject><subject>Glycerol</subject><subject>Half-life</subject><subject>Irradiation</subject><subject>Marine aquaculture</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Oxolinic acid</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photodegradation</subject><subject>Quantum dots</subject><subject>Radiation</subject><subject>Radioactive half-life</subject><subject>Salts</subject><subject>Solar radiation</subject><subject>Sulfadiazine</subject><subject>Synthesis</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>water treatment</subject><issn>2305-6304</issn><issn>2305-6304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtvEzEQgC0EolXpkftKXLgs-P24IEXhVamiILVny2vPpo4269T2VvDvcUiFCL545Pn8zdiD0GuC3zFm8PuafkZfDKGYMfwMnVOGRS8Z5s__ic_QZSlb3JYhTEv5Ep0xbjhRkp2jH9_vU00BNtkFV2OauzR2q4fF-WWqS4ZuNdc4xFRbne6uxHnTrV0eGvcx1dLfxhvafXNz8mm3TyVWKK_Qi9FNBS6f9gt09_nT7fprf33z5Wq9uu49F7r2g6MsBKkkYUYb6iRgSYwGp7HgYhSeKaMdAFWCSc5DoFLAKIYRt7xrD75AV0dvSG5r9znuXP5lk4v2z0HKG-tya3sCywYPVHoSiIJ2lxmuGQ4iHGLv4OD6cHTtl2EHwcNcs5tOpKeZOd7bTXq0WmGOpW6Ct0-CnB4WKNXuYvEwTW6GtBRLJeGUGq5MQ9_8h27Tkuf2VQeKaqaUEI3qj5TPqZQM499mCLaH2duT2bPfux2g3w</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Louros, Vitória</creator><creator>Ferreira, Liliana</creator><creator>Silva, Valentina</creator><creator>Silva, Carla</creator><creator>Martins, Manuel</creator><creator>Otero, Marta</creator><creator>Esteves, Valdemar</creator><creator>Lima, Diana</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4093-1814</orcidid><orcidid>https://orcid.org/0000-0002-8539-4787</orcidid><orcidid>https://orcid.org/0000-0001-5218-0726</orcidid></search><sort><creationdate>20211202</creationdate><title>Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites</title><author>Louros, Vitória ; Ferreira, Liliana ; Silva, Valentina ; Silva, Carla ; Martins, Manuel ; Otero, Marta ; Esteves, Valdemar ; Lima, Diana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibiotics</topic><topic>Aquaculture</topic><topic>Aquaculture effluents</topic><topic>aquaculture industry</topic><topic>Carbon</topic><topic>Carbon dots</topic><topic>Citric acid</topic><topic>Effluents</topic><topic>Glycerol</topic><topic>Half-life</topic><topic>Irradiation</topic><topic>Marine aquaculture</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Oxolinic acid</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photodegradation</topic><topic>Quantum dots</topic><topic>Radiation</topic><topic>Radioactive half-life</topic><topic>Salts</topic><topic>Solar radiation</topic><topic>Sulfadiazine</topic><topic>Synthesis</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louros, Vitória</creatorcontrib><creatorcontrib>Ferreira, Liliana</creatorcontrib><creatorcontrib>Silva, Valentina</creatorcontrib><creatorcontrib>Silva, Carla</creatorcontrib><creatorcontrib>Martins, Manuel</creatorcontrib><creatorcontrib>Otero, Marta</creatorcontrib><creatorcontrib>Esteves, Valdemar</creatorcontrib><creatorcontrib>Lima, Diana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest_Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Toxics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louros, Vitória</au><au>Ferreira, Liliana</au><au>Silva, Valentina</au><au>Silva, Carla</au><au>Martins, Manuel</au><au>Otero, Marta</au><au>Esteves, Valdemar</au><au>Lima, Diana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites</atitle><jtitle>Toxics (Basel)</jtitle><date>2021-12-02</date><risdate>2021</risdate><volume>9</volume><issue>12</issue><spage>330</spage><pages>330-</pages><issn>2305-6304</issn><eissn>2305-6304</eissn><abstract>In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‰, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ’s half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34941763</pmid><doi>10.3390/toxics9120330</doi><orcidid>https://orcid.org/0000-0003-4093-1814</orcidid><orcidid>https://orcid.org/0000-0002-8539-4787</orcidid><orcidid>https://orcid.org/0000-0001-5218-0726</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2305-6304 |
ispartof | Toxics (Basel), 2021-12, Vol.9 (12), p.330 |
issn | 2305-6304 2305-6304 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3bce26c1d17e4a2394830d5d4a23cae0 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Antibiotics Aquaculture Aquaculture effluents aquaculture industry Carbon Carbon dots Citric acid Effluents Glycerol Half-life Irradiation Marine aquaculture Nanocomposites Nanoparticles Oxolinic acid Photocatalysis Photocatalysts Photodegradation Quantum dots Radiation Radioactive half-life Salts Solar radiation Sulfadiazine Synthesis Titanium Titanium dioxide water treatment |
title | Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodegradation%20of%20Aquaculture%20Antibiotics%20Using%20Carbon%20Dots-TiO2%20Nanocomposites&rft.jtitle=Toxics%20(Basel)&rft.au=Louros,%20Vit%C3%B3ria&rft.date=2021-12-02&rft.volume=9&rft.issue=12&rft.spage=330&rft.pages=330-&rft.issn=2305-6304&rft.eissn=2305-6304&rft_id=info:doi/10.3390/toxics9120330&rft_dat=%3Cproquest_doaj_%3E2612837755%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612837755&rft_id=info:pmid/34941763&rfr_iscdi=true |