Loading…

Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites

In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. T...

Full description

Saved in:
Bibliographic Details
Published in:Toxics (Basel) 2021-12, Vol.9 (12), p.330
Main Authors: Louros, Vitória, Ferreira, Liliana, Silva, Valentina, Silva, Carla, Martins, Manuel, Otero, Marta, Esteves, Valdemar, Lima, Diana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203
cites cdi_FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203
container_end_page
container_issue 12
container_start_page 330
container_title Toxics (Basel)
container_volume 9
creator Louros, Vitória
Ferreira, Liliana
Silva, Valentina
Silva, Carla
Martins, Manuel
Otero, Marta
Esteves, Valdemar
Lima, Diana
description In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‰, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ’s half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.
doi_str_mv 10.3390/toxics9120330
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3bce26c1d17e4a2394830d5d4a23cae0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3bce26c1d17e4a2394830d5d4a23cae0</doaj_id><sourcerecordid>2612837755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203</originalsourceid><addsrcrecordid>eNpdkUtvEzEQgC0EolXpkftKXLgs-P24IEXhVamiILVny2vPpo4269T2VvDvcUiFCL545Pn8zdiD0GuC3zFm8PuafkZfDKGYMfwMnVOGRS8Z5s__ic_QZSlb3JYhTEv5Ep0xbjhRkp2jH9_vU00BNtkFV2OauzR2q4fF-WWqS4ZuNdc4xFRbne6uxHnTrV0eGvcx1dLfxhvafXNz8mm3TyVWKK_Qi9FNBS6f9gt09_nT7fprf33z5Wq9uu49F7r2g6MsBKkkYUYb6iRgSYwGp7HgYhSeKaMdAFWCSc5DoFLAKIYRt7xrD75AV0dvSG5r9znuXP5lk4v2z0HKG-tya3sCywYPVHoSiIJ2lxmuGQ4iHGLv4OD6cHTtl2EHwcNcs5tOpKeZOd7bTXq0WmGOpW6Ct0-CnB4WKNXuYvEwTW6GtBRLJeGUGq5MQ9_8h27Tkuf2VQeKaqaUEI3qj5TPqZQM499mCLaH2duT2bPfux2g3w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612837755</pqid></control><display><type>article</type><title>Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Louros, Vitória ; Ferreira, Liliana ; Silva, Valentina ; Silva, Carla ; Martins, Manuel ; Otero, Marta ; Esteves, Valdemar ; Lima, Diana</creator><creatorcontrib>Louros, Vitória ; Ferreira, Liliana ; Silva, Valentina ; Silva, Carla ; Martins, Manuel ; Otero, Marta ; Esteves, Valdemar ; Lima, Diana</creatorcontrib><description>In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‰, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ’s half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.</description><identifier>ISSN: 2305-6304</identifier><identifier>EISSN: 2305-6304</identifier><identifier>DOI: 10.3390/toxics9120330</identifier><identifier>PMID: 34941763</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antibiotics ; Aquaculture ; Aquaculture effluents ; aquaculture industry ; Carbon ; Carbon dots ; Citric acid ; Effluents ; Glycerol ; Half-life ; Irradiation ; Marine aquaculture ; Nanocomposites ; Nanoparticles ; Oxolinic acid ; Photocatalysis ; Photocatalysts ; Photodegradation ; Quantum dots ; Radiation ; Radioactive half-life ; Salts ; Solar radiation ; Sulfadiazine ; Synthesis ; Titanium ; Titanium dioxide ; water treatment</subject><ispartof>Toxics (Basel), 2021-12, Vol.9 (12), p.330</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203</citedby><cites>FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203</cites><orcidid>0000-0003-4093-1814 ; 0000-0002-8539-4787 ; 0000-0001-5218-0726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612837755/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612837755?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Louros, Vitória</creatorcontrib><creatorcontrib>Ferreira, Liliana</creatorcontrib><creatorcontrib>Silva, Valentina</creatorcontrib><creatorcontrib>Silva, Carla</creatorcontrib><creatorcontrib>Martins, Manuel</creatorcontrib><creatorcontrib>Otero, Marta</creatorcontrib><creatorcontrib>Esteves, Valdemar</creatorcontrib><creatorcontrib>Lima, Diana</creatorcontrib><title>Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites</title><title>Toxics (Basel)</title><description>In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‰, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ’s half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.</description><subject>Antibiotics</subject><subject>Aquaculture</subject><subject>Aquaculture effluents</subject><subject>aquaculture industry</subject><subject>Carbon</subject><subject>Carbon dots</subject><subject>Citric acid</subject><subject>Effluents</subject><subject>Glycerol</subject><subject>Half-life</subject><subject>Irradiation</subject><subject>Marine aquaculture</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Oxolinic acid</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photodegradation</subject><subject>Quantum dots</subject><subject>Radiation</subject><subject>Radioactive half-life</subject><subject>Salts</subject><subject>Solar radiation</subject><subject>Sulfadiazine</subject><subject>Synthesis</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>water treatment</subject><issn>2305-6304</issn><issn>2305-6304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtvEzEQgC0EolXpkftKXLgs-P24IEXhVamiILVny2vPpo4269T2VvDvcUiFCL545Pn8zdiD0GuC3zFm8PuafkZfDKGYMfwMnVOGRS8Z5s__ic_QZSlb3JYhTEv5Ep0xbjhRkp2jH9_vU00BNtkFV2OauzR2q4fF-WWqS4ZuNdc4xFRbne6uxHnTrV0eGvcx1dLfxhvafXNz8mm3TyVWKK_Qi9FNBS6f9gt09_nT7fprf33z5Wq9uu49F7r2g6MsBKkkYUYb6iRgSYwGp7HgYhSeKaMdAFWCSc5DoFLAKIYRt7xrD75AV0dvSG5r9znuXP5lk4v2z0HKG-tya3sCywYPVHoSiIJ2lxmuGQ4iHGLv4OD6cHTtl2EHwcNcs5tOpKeZOd7bTXq0WmGOpW6Ct0-CnB4WKNXuYvEwTW6GtBRLJeGUGq5MQ9_8h27Tkuf2VQeKaqaUEI3qj5TPqZQM499mCLaH2duT2bPfux2g3w</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Louros, Vitória</creator><creator>Ferreira, Liliana</creator><creator>Silva, Valentina</creator><creator>Silva, Carla</creator><creator>Martins, Manuel</creator><creator>Otero, Marta</creator><creator>Esteves, Valdemar</creator><creator>Lima, Diana</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4093-1814</orcidid><orcidid>https://orcid.org/0000-0002-8539-4787</orcidid><orcidid>https://orcid.org/0000-0001-5218-0726</orcidid></search><sort><creationdate>20211202</creationdate><title>Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites</title><author>Louros, Vitória ; Ferreira, Liliana ; Silva, Valentina ; Silva, Carla ; Martins, Manuel ; Otero, Marta ; Esteves, Valdemar ; Lima, Diana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibiotics</topic><topic>Aquaculture</topic><topic>Aquaculture effluents</topic><topic>aquaculture industry</topic><topic>Carbon</topic><topic>Carbon dots</topic><topic>Citric acid</topic><topic>Effluents</topic><topic>Glycerol</topic><topic>Half-life</topic><topic>Irradiation</topic><topic>Marine aquaculture</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Oxolinic acid</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photodegradation</topic><topic>Quantum dots</topic><topic>Radiation</topic><topic>Radioactive half-life</topic><topic>Salts</topic><topic>Solar radiation</topic><topic>Sulfadiazine</topic><topic>Synthesis</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louros, Vitória</creatorcontrib><creatorcontrib>Ferreira, Liliana</creatorcontrib><creatorcontrib>Silva, Valentina</creatorcontrib><creatorcontrib>Silva, Carla</creatorcontrib><creatorcontrib>Martins, Manuel</creatorcontrib><creatorcontrib>Otero, Marta</creatorcontrib><creatorcontrib>Esteves, Valdemar</creatorcontrib><creatorcontrib>Lima, Diana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest_Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Toxics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louros, Vitória</au><au>Ferreira, Liliana</au><au>Silva, Valentina</au><au>Silva, Carla</au><au>Martins, Manuel</au><au>Otero, Marta</au><au>Esteves, Valdemar</au><au>Lima, Diana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites</atitle><jtitle>Toxics (Basel)</jtitle><date>2021-12-02</date><risdate>2021</risdate><volume>9</volume><issue>12</issue><spage>330</spage><pages>330-</pages><issn>2305-6304</issn><eissn>2305-6304</eissn><abstract>In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‰, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ’s half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34941763</pmid><doi>10.3390/toxics9120330</doi><orcidid>https://orcid.org/0000-0003-4093-1814</orcidid><orcidid>https://orcid.org/0000-0002-8539-4787</orcidid><orcidid>https://orcid.org/0000-0001-5218-0726</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2305-6304
ispartof Toxics (Basel), 2021-12, Vol.9 (12), p.330
issn 2305-6304
2305-6304
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3bce26c1d17e4a2394830d5d4a23cae0
source PubMed (Medline); Publicly Available Content Database
subjects Antibiotics
Aquaculture
Aquaculture effluents
aquaculture industry
Carbon
Carbon dots
Citric acid
Effluents
Glycerol
Half-life
Irradiation
Marine aquaculture
Nanocomposites
Nanoparticles
Oxolinic acid
Photocatalysis
Photocatalysts
Photodegradation
Quantum dots
Radiation
Radioactive half-life
Salts
Solar radiation
Sulfadiazine
Synthesis
Titanium
Titanium dioxide
water treatment
title Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodegradation%20of%20Aquaculture%20Antibiotics%20Using%20Carbon%20Dots-TiO2%20Nanocomposites&rft.jtitle=Toxics%20(Basel)&rft.au=Louros,%20Vit%C3%B3ria&rft.date=2021-12-02&rft.volume=9&rft.issue=12&rft.spage=330&rft.pages=330-&rft.issn=2305-6304&rft.eissn=2305-6304&rft_id=info:doi/10.3390/toxics9120330&rft_dat=%3Cproquest_doaj_%3E2612837755%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-ba23dd676139892a6e06198ea80545f5c3798aee2753644dd265ef5bf0054a203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612837755&rft_id=info:pmid/34941763&rfr_iscdi=true