Loading…

Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V

Metal additive manufacturing (MAM) technology is now changing the pattern of the high-end manufacturing industry, among which MAM fabricated Ti6Al4V has been far the most extensively investigated material and attracts a lot of research interests. This work established a deep neural network (DNN) to...

Full description

Saved in:
Bibliographic Details
Published in:MATEC web of conferences 2020, Vol.321, p.3004
Main Authors: Li, Jinghao, Sage, Manuel, Zhou, Xianglin, Brochu, Mathieu, Zhao, Yaoyao Fiona
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1894-a32417a70d514fab1195dced4d24e4839f2b5721a90f5fe1daaa34d2483cdb4b3
container_end_page
container_issue
container_start_page 3004
container_title MATEC web of conferences
container_volume 321
creator Li, Jinghao
Sage, Manuel
Zhou, Xianglin
Brochu, Mathieu
Zhao, Yaoyao Fiona
description Metal additive manufacturing (MAM) technology is now changing the pattern of the high-end manufacturing industry, among which MAM fabricated Ti6Al4V has been far the most extensively investigated material and attracts a lot of research interests. This work established a deep neural network (DNN) to investigate the grain boundary in competitive grain growth for a bi-crystal system, the column β grains of Ti6Al4V as an example. Because of the limited number of experimental samples, the DNN is trained based on the data coming from the Geometrical Limited criterion. A series of direct energy deposition experiment using Ti6Al4V is carried out under the Taguchi experimental design. The grain boundary angles between the column grains are measured in the experiment and used to evaluate the accuracy of DNN.
doi_str_mv 10.1051/matecconf/202032103004
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3bd403dc2c17456abef865e02ada0115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3bd403dc2c17456abef865e02ada0115</doaj_id><sourcerecordid>2487741529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1894-a32417a70d514fab1195dced4d24e4839f2b5721a90f5fe1daaa34d2483cdb4b3</originalsourceid><addsrcrecordid>eNpNUU1PwkAQbYwmEuQvmCae0Zn9aOkRiSIJxAsabpvpfsAS6OK2YPz3FjGEy8zkzZv3JnlJco_wiCDxaUuN1TpU7okBA84QOIC4SjqMZdhnPFtcX8y3Sa-u1wCAvMihyDvJYkZ65SubTi3FylfL1IWYjsJ2Zxvf-INNx5F81dbw3azSZ7uig28ZLTQ05sSYUbV3pJt9PN7PfTbciM-75MbRpra9_95NPl5f5qO3_vR9PBkNp32Ng0L0iTOBOeVgJApHJWIhjbZGGCasGPDCsVLmDKkAJ51FQ0T8uBxwbUpR8m4yOemaQGu1i35L8UcF8uoPCHGpKDZeb6zipRHAjWYacyEzKq0bZNICI0OAKFuth5PWLoavva0btQ77WLXvq9YwzwVKVrSs7MTSMdR1tO7siqCOoahzKOoyFP4LYeWBjA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487741529</pqid></control><display><type>article</type><title>Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V</title><source>Publicly Available Content Database</source><creator>Li, Jinghao ; Sage, Manuel ; Zhou, Xianglin ; Brochu, Mathieu ; Zhao, Yaoyao Fiona</creator><contributor>Villechaise, P. ; Appolaire, B. ; Castany, P. ; Monceau, D. ; Prima, F. ; Delfosse, J. ; Delaunay, C. ; Denquin, A. ; Millet, Y. ; Piellard, M. ; Viguier, B. ; Gey, N. ; Gloriant, T. ; Hascoët, J.-Y. ; Germain, L. ; Gautier, E. ; Pettinari-Sturmel, F. ; Dehmas, M. ; Hémery, S.</contributor><creatorcontrib>Li, Jinghao ; Sage, Manuel ; Zhou, Xianglin ; Brochu, Mathieu ; Zhao, Yaoyao Fiona ; Villechaise, P. ; Appolaire, B. ; Castany, P. ; Monceau, D. ; Prima, F. ; Delfosse, J. ; Delaunay, C. ; Denquin, A. ; Millet, Y. ; Piellard, M. ; Viguier, B. ; Gey, N. ; Gloriant, T. ; Hascoët, J.-Y. ; Germain, L. ; Gautier, E. ; Pettinari-Sturmel, F. ; Dehmas, M. ; Hémery, S.</creatorcontrib><description>Metal additive manufacturing (MAM) technology is now changing the pattern of the high-end manufacturing industry, among which MAM fabricated Ti6Al4V has been far the most extensively investigated material and attracts a lot of research interests. This work established a deep neural network (DNN) to investigate the grain boundary in competitive grain growth for a bi-crystal system, the column β grains of Ti6Al4V as an example. Because of the limited number of experimental samples, the DNN is trained based on the data coming from the Geometrical Limited criterion. A series of direct energy deposition experiment using Ti6Al4V is carried out under the Taguchi experimental design. The grain boundary angles between the column grains are measured in the experiment and used to evaluate the accuracy of DNN.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/202032103004</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Additive manufacturing ; Angles (geometry) ; Artificial neural networks ; Business competition ; Design of experiments ; Grain boundaries ; Grain growth ; Machine learning ; Titanium base alloys</subject><ispartof>MATEC web of conferences, 2020, Vol.321, p.3004</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1894-a32417a70d514fab1195dced4d24e4839f2b5721a90f5fe1daaa34d2483cdb4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2487741529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4024,23930,23931,25140,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Villechaise, P.</contributor><contributor>Appolaire, B.</contributor><contributor>Castany, P.</contributor><contributor>Monceau, D.</contributor><contributor>Prima, F.</contributor><contributor>Delfosse, J.</contributor><contributor>Delaunay, C.</contributor><contributor>Denquin, A.</contributor><contributor>Millet, Y.</contributor><contributor>Piellard, M.</contributor><contributor>Viguier, B.</contributor><contributor>Gey, N.</contributor><contributor>Gloriant, T.</contributor><contributor>Hascoët, J.-Y.</contributor><contributor>Germain, L.</contributor><contributor>Gautier, E.</contributor><contributor>Pettinari-Sturmel, F.</contributor><contributor>Dehmas, M.</contributor><contributor>Hémery, S.</contributor><creatorcontrib>Li, Jinghao</creatorcontrib><creatorcontrib>Sage, Manuel</creatorcontrib><creatorcontrib>Zhou, Xianglin</creatorcontrib><creatorcontrib>Brochu, Mathieu</creatorcontrib><creatorcontrib>Zhao, Yaoyao Fiona</creatorcontrib><title>Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V</title><title>MATEC web of conferences</title><description>Metal additive manufacturing (MAM) technology is now changing the pattern of the high-end manufacturing industry, among which MAM fabricated Ti6Al4V has been far the most extensively investigated material and attracts a lot of research interests. This work established a deep neural network (DNN) to investigate the grain boundary in competitive grain growth for a bi-crystal system, the column β grains of Ti6Al4V as an example. Because of the limited number of experimental samples, the DNN is trained based on the data coming from the Geometrical Limited criterion. A series of direct energy deposition experiment using Ti6Al4V is carried out under the Taguchi experimental design. The grain boundary angles between the column grains are measured in the experiment and used to evaluate the accuracy of DNN.</description><subject>Additive manufacturing</subject><subject>Angles (geometry)</subject><subject>Artificial neural networks</subject><subject>Business competition</subject><subject>Design of experiments</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Machine learning</subject><subject>Titanium base alloys</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQbYwmEuQvmCae0Zn9aOkRiSIJxAsabpvpfsAS6OK2YPz3FjGEy8zkzZv3JnlJco_wiCDxaUuN1TpU7okBA84QOIC4SjqMZdhnPFtcX8y3Sa-u1wCAvMihyDvJYkZ65SubTi3FylfL1IWYjsJ2Zxvf-INNx5F81dbw3azSZ7uig28ZLTQ05sSYUbV3pJt9PN7PfTbciM-75MbRpra9_95NPl5f5qO3_vR9PBkNp32Ng0L0iTOBOeVgJApHJWIhjbZGGCasGPDCsVLmDKkAJ51FQ0T8uBxwbUpR8m4yOemaQGu1i35L8UcF8uoPCHGpKDZeb6zipRHAjWYacyEzKq0bZNICI0OAKFuth5PWLoavva0btQ77WLXvq9YwzwVKVrSs7MTSMdR1tO7siqCOoahzKOoyFP4LYeWBjA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Jinghao</creator><creator>Sage, Manuel</creator><creator>Zhou, Xianglin</creator><creator>Brochu, Mathieu</creator><creator>Zhao, Yaoyao Fiona</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V</title><author>Li, Jinghao ; Sage, Manuel ; Zhou, Xianglin ; Brochu, Mathieu ; Zhao, Yaoyao Fiona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1894-a32417a70d514fab1195dced4d24e4839f2b5721a90f5fe1daaa34d2483cdb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Angles (geometry)</topic><topic>Artificial neural networks</topic><topic>Business competition</topic><topic>Design of experiments</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Machine learning</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinghao</creatorcontrib><creatorcontrib>Sage, Manuel</creatorcontrib><creatorcontrib>Zhou, Xianglin</creatorcontrib><creatorcontrib>Brochu, Mathieu</creatorcontrib><creatorcontrib>Zhao, Yaoyao Fiona</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>MATEC web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinghao</au><au>Sage, Manuel</au><au>Zhou, Xianglin</au><au>Brochu, Mathieu</au><au>Zhao, Yaoyao Fiona</au><au>Villechaise, P.</au><au>Appolaire, B.</au><au>Castany, P.</au><au>Monceau, D.</au><au>Prima, F.</au><au>Delfosse, J.</au><au>Delaunay, C.</au><au>Denquin, A.</au><au>Millet, Y.</au><au>Piellard, M.</au><au>Viguier, B.</au><au>Gey, N.</au><au>Gloriant, T.</au><au>Hascoët, J.-Y.</au><au>Germain, L.</au><au>Gautier, E.</au><au>Pettinari-Sturmel, F.</au><au>Dehmas, M.</au><au>Hémery, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V</atitle><jtitle>MATEC web of conferences</jtitle><date>2020</date><risdate>2020</risdate><volume>321</volume><spage>3004</spage><pages>3004-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>Metal additive manufacturing (MAM) technology is now changing the pattern of the high-end manufacturing industry, among which MAM fabricated Ti6Al4V has been far the most extensively investigated material and attracts a lot of research interests. This work established a deep neural network (DNN) to investigate the grain boundary in competitive grain growth for a bi-crystal system, the column β grains of Ti6Al4V as an example. Because of the limited number of experimental samples, the DNN is trained based on the data coming from the Geometrical Limited criterion. A series of direct energy deposition experiment using Ti6Al4V is carried out under the Taguchi experimental design. The grain boundary angles between the column grains are measured in the experiment and used to evaluate the accuracy of DNN.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/202032103004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2261-236X
ispartof MATEC web of conferences, 2020, Vol.321, p.3004
issn 2261-236X
2274-7214
2261-236X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3bd403dc2c17456abef865e02ada0115
source Publicly Available Content Database
subjects Additive manufacturing
Angles (geometry)
Artificial neural networks
Business competition
Design of experiments
Grain boundaries
Grain growth
Machine learning
Titanium base alloys
title Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20for%20Competitive%20Grain%20Growth%20Behavior%20in%20Additive%20Manufacturing%20Ti6Al4V&rft.jtitle=MATEC%20web%20of%20conferences&rft.au=Li,%20Jinghao&rft.date=2020&rft.volume=321&rft.spage=3004&rft.pages=3004-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/202032103004&rft_dat=%3Cproquest_doaj_%3E2487741529%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1894-a32417a70d514fab1195dced4d24e4839f2b5721a90f5fe1daaa34d2483cdb4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487741529&rft_id=info:pmid/&rfr_iscdi=true