Loading…
Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V
Metal additive manufacturing (MAM) technology is now changing the pattern of the high-end manufacturing industry, among which MAM fabricated Ti6Al4V has been far the most extensively investigated material and attracts a lot of research interests. This work established a deep neural network (DNN) to...
Saved in:
Published in: | MATEC web of conferences 2020, Vol.321, p.3004 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1894-a32417a70d514fab1195dced4d24e4839f2b5721a90f5fe1daaa34d2483cdb4b3 |
container_end_page | |
container_issue | |
container_start_page | 3004 |
container_title | MATEC web of conferences |
container_volume | 321 |
creator | Li, Jinghao Sage, Manuel Zhou, Xianglin Brochu, Mathieu Zhao, Yaoyao Fiona |
description | Metal additive manufacturing (MAM) technology is now changing the pattern of the high-end manufacturing industry, among which MAM fabricated Ti6Al4V has been far the most extensively investigated material and attracts a lot of research interests. This work established a deep neural network (DNN) to investigate the grain boundary in competitive grain growth for a bi-crystal system, the column β grains of Ti6Al4V as an example. Because of the limited number of experimental samples, the DNN is trained based on the data coming from the Geometrical Limited criterion. A series of direct energy deposition experiment using Ti6Al4V is carried out under the Taguchi experimental design. The grain boundary angles between the column grains are measured in the experiment and used to evaluate the accuracy of DNN. |
doi_str_mv | 10.1051/matecconf/202032103004 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3bd403dc2c17456abef865e02ada0115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3bd403dc2c17456abef865e02ada0115</doaj_id><sourcerecordid>2487741529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1894-a32417a70d514fab1195dced4d24e4839f2b5721a90f5fe1daaa34d2483cdb4b3</originalsourceid><addsrcrecordid>eNpNUU1PwkAQbYwmEuQvmCae0Zn9aOkRiSIJxAsabpvpfsAS6OK2YPz3FjGEy8zkzZv3JnlJco_wiCDxaUuN1TpU7okBA84QOIC4SjqMZdhnPFtcX8y3Sa-u1wCAvMihyDvJYkZ65SubTi3FylfL1IWYjsJ2Zxvf-INNx5F81dbw3azSZ7uig28ZLTQ05sSYUbV3pJt9PN7PfTbciM-75MbRpra9_95NPl5f5qO3_vR9PBkNp32Ng0L0iTOBOeVgJApHJWIhjbZGGCasGPDCsVLmDKkAJ51FQ0T8uBxwbUpR8m4yOemaQGu1i35L8UcF8uoPCHGpKDZeb6zipRHAjWYacyEzKq0bZNICI0OAKFuth5PWLoavva0btQ77WLXvq9YwzwVKVrSs7MTSMdR1tO7siqCOoahzKOoyFP4LYeWBjA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487741529</pqid></control><display><type>article</type><title>Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V</title><source>Publicly Available Content Database</source><creator>Li, Jinghao ; Sage, Manuel ; Zhou, Xianglin ; Brochu, Mathieu ; Zhao, Yaoyao Fiona</creator><contributor>Villechaise, P. ; Appolaire, B. ; Castany, P. ; Monceau, D. ; Prima, F. ; Delfosse, J. ; Delaunay, C. ; Denquin, A. ; Millet, Y. ; Piellard, M. ; Viguier, B. ; Gey, N. ; Gloriant, T. ; Hascoët, J.-Y. ; Germain, L. ; Gautier, E. ; Pettinari-Sturmel, F. ; Dehmas, M. ; Hémery, S.</contributor><creatorcontrib>Li, Jinghao ; Sage, Manuel ; Zhou, Xianglin ; Brochu, Mathieu ; Zhao, Yaoyao Fiona ; Villechaise, P. ; Appolaire, B. ; Castany, P. ; Monceau, D. ; Prima, F. ; Delfosse, J. ; Delaunay, C. ; Denquin, A. ; Millet, Y. ; Piellard, M. ; Viguier, B. ; Gey, N. ; Gloriant, T. ; Hascoët, J.-Y. ; Germain, L. ; Gautier, E. ; Pettinari-Sturmel, F. ; Dehmas, M. ; Hémery, S.</creatorcontrib><description>Metal additive manufacturing (MAM) technology is now changing the pattern of the high-end manufacturing industry, among which MAM fabricated Ti6Al4V has been far the most extensively investigated material and attracts a lot of research interests. This work established a deep neural network (DNN) to investigate the grain boundary in competitive grain growth for a bi-crystal system, the column β grains of Ti6Al4V as an example. Because of the limited number of experimental samples, the DNN is trained based on the data coming from the Geometrical Limited criterion. A series of direct energy deposition experiment using Ti6Al4V is carried out under the Taguchi experimental design. The grain boundary angles between the column grains are measured in the experiment and used to evaluate the accuracy of DNN.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/202032103004</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Additive manufacturing ; Angles (geometry) ; Artificial neural networks ; Business competition ; Design of experiments ; Grain boundaries ; Grain growth ; Machine learning ; Titanium base alloys</subject><ispartof>MATEC web of conferences, 2020, Vol.321, p.3004</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1894-a32417a70d514fab1195dced4d24e4839f2b5721a90f5fe1daaa34d2483cdb4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2487741529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4024,23930,23931,25140,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Villechaise, P.</contributor><contributor>Appolaire, B.</contributor><contributor>Castany, P.</contributor><contributor>Monceau, D.</contributor><contributor>Prima, F.</contributor><contributor>Delfosse, J.</contributor><contributor>Delaunay, C.</contributor><contributor>Denquin, A.</contributor><contributor>Millet, Y.</contributor><contributor>Piellard, M.</contributor><contributor>Viguier, B.</contributor><contributor>Gey, N.</contributor><contributor>Gloriant, T.</contributor><contributor>Hascoët, J.-Y.</contributor><contributor>Germain, L.</contributor><contributor>Gautier, E.</contributor><contributor>Pettinari-Sturmel, F.</contributor><contributor>Dehmas, M.</contributor><contributor>Hémery, S.</contributor><creatorcontrib>Li, Jinghao</creatorcontrib><creatorcontrib>Sage, Manuel</creatorcontrib><creatorcontrib>Zhou, Xianglin</creatorcontrib><creatorcontrib>Brochu, Mathieu</creatorcontrib><creatorcontrib>Zhao, Yaoyao Fiona</creatorcontrib><title>Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V</title><title>MATEC web of conferences</title><description>Metal additive manufacturing (MAM) technology is now changing the pattern of the high-end manufacturing industry, among which MAM fabricated Ti6Al4V has been far the most extensively investigated material and attracts a lot of research interests. This work established a deep neural network (DNN) to investigate the grain boundary in competitive grain growth for a bi-crystal system, the column β grains of Ti6Al4V as an example. Because of the limited number of experimental samples, the DNN is trained based on the data coming from the Geometrical Limited criterion. A series of direct energy deposition experiment using Ti6Al4V is carried out under the Taguchi experimental design. The grain boundary angles between the column grains are measured in the experiment and used to evaluate the accuracy of DNN.</description><subject>Additive manufacturing</subject><subject>Angles (geometry)</subject><subject>Artificial neural networks</subject><subject>Business competition</subject><subject>Design of experiments</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Machine learning</subject><subject>Titanium base alloys</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQbYwmEuQvmCae0Zn9aOkRiSIJxAsabpvpfsAS6OK2YPz3FjGEy8zkzZv3JnlJco_wiCDxaUuN1TpU7okBA84QOIC4SjqMZdhnPFtcX8y3Sa-u1wCAvMihyDvJYkZ65SubTi3FylfL1IWYjsJ2Zxvf-INNx5F81dbw3azSZ7uig28ZLTQ05sSYUbV3pJt9PN7PfTbciM-75MbRpra9_95NPl5f5qO3_vR9PBkNp32Ng0L0iTOBOeVgJApHJWIhjbZGGCasGPDCsVLmDKkAJ51FQ0T8uBxwbUpR8m4yOemaQGu1i35L8UcF8uoPCHGpKDZeb6zipRHAjWYacyEzKq0bZNICI0OAKFuth5PWLoavva0btQ77WLXvq9YwzwVKVrSs7MTSMdR1tO7siqCOoahzKOoyFP4LYeWBjA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Jinghao</creator><creator>Sage, Manuel</creator><creator>Zhou, Xianglin</creator><creator>Brochu, Mathieu</creator><creator>Zhao, Yaoyao Fiona</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V</title><author>Li, Jinghao ; Sage, Manuel ; Zhou, Xianglin ; Brochu, Mathieu ; Zhao, Yaoyao Fiona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1894-a32417a70d514fab1195dced4d24e4839f2b5721a90f5fe1daaa34d2483cdb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Angles (geometry)</topic><topic>Artificial neural networks</topic><topic>Business competition</topic><topic>Design of experiments</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Machine learning</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinghao</creatorcontrib><creatorcontrib>Sage, Manuel</creatorcontrib><creatorcontrib>Zhou, Xianglin</creatorcontrib><creatorcontrib>Brochu, Mathieu</creatorcontrib><creatorcontrib>Zhao, Yaoyao Fiona</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>MATEC web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinghao</au><au>Sage, Manuel</au><au>Zhou, Xianglin</au><au>Brochu, Mathieu</au><au>Zhao, Yaoyao Fiona</au><au>Villechaise, P.</au><au>Appolaire, B.</au><au>Castany, P.</au><au>Monceau, D.</au><au>Prima, F.</au><au>Delfosse, J.</au><au>Delaunay, C.</au><au>Denquin, A.</au><au>Millet, Y.</au><au>Piellard, M.</au><au>Viguier, B.</au><au>Gey, N.</au><au>Gloriant, T.</au><au>Hascoët, J.-Y.</au><au>Germain, L.</au><au>Gautier, E.</au><au>Pettinari-Sturmel, F.</au><au>Dehmas, M.</au><au>Hémery, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V</atitle><jtitle>MATEC web of conferences</jtitle><date>2020</date><risdate>2020</risdate><volume>321</volume><spage>3004</spage><pages>3004-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>Metal additive manufacturing (MAM) technology is now changing the pattern of the high-end manufacturing industry, among which MAM fabricated Ti6Al4V has been far the most extensively investigated material and attracts a lot of research interests. This work established a deep neural network (DNN) to investigate the grain boundary in competitive grain growth for a bi-crystal system, the column β grains of Ti6Al4V as an example. Because of the limited number of experimental samples, the DNN is trained based on the data coming from the Geometrical Limited criterion. A series of direct energy deposition experiment using Ti6Al4V is carried out under the Taguchi experimental design. The grain boundary angles between the column grains are measured in the experiment and used to evaluate the accuracy of DNN.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/202032103004</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2261-236X |
ispartof | MATEC web of conferences, 2020, Vol.321, p.3004 |
issn | 2261-236X 2274-7214 2261-236X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3bd403dc2c17456abef865e02ada0115 |
source | Publicly Available Content Database |
subjects | Additive manufacturing Angles (geometry) Artificial neural networks Business competition Design of experiments Grain boundaries Grain growth Machine learning Titanium base alloys |
title | Machine Learning for Competitive Grain Growth Behavior in Additive Manufacturing Ti6Al4V |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20for%20Competitive%20Grain%20Growth%20Behavior%20in%20Additive%20Manufacturing%20Ti6Al4V&rft.jtitle=MATEC%20web%20of%20conferences&rft.au=Li,%20Jinghao&rft.date=2020&rft.volume=321&rft.spage=3004&rft.pages=3004-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/202032103004&rft_dat=%3Cproquest_doaj_%3E2487741529%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1894-a32417a70d514fab1195dced4d24e4839f2b5721a90f5fe1daaa34d2483cdb4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487741529&rft_id=info:pmid/&rfr_iscdi=true |