Loading…

Exploring‎ ‎the ‎Algebraic‎ ‎Properties‎ ‎of Gyrosemigroups and a Characterization of Gyrosemigroups of Order 2

‎A significant development in the field of gyrogroups was the introduction of the space of all relativistically admissible velocities‎, ‎which brought gyrogroups into the mainstream‎. ‎A group has various generalizations‎, ‎one of which is the notion of gyrogroups‎. ‎Moreover‎, ‎for any pair (a‎, ‎b...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics interdisciplinary research (Online) 2024-09, Vol.9 (3), p.255-267
Main Authors: Saeed Mirvakili, Raufeh Manaviyat, kazem Hamidizadeh
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 267
container_issue 3
container_start_page 255
container_title Mathematics interdisciplinary research (Online)
container_volume 9
creator Saeed Mirvakili
Raufeh Manaviyat
kazem Hamidizadeh
description ‎A significant development in the field of gyrogroups was the introduction of the space of all relativistically admissible velocities‎, ‎which brought gyrogroups into the mainstream‎. ‎A group has various generalizations‎, ‎one of which is the notion of gyrogroups‎. ‎Moreover‎, ‎for any pair (a‎, ‎b) in this structure‎, ‎there exists an automorphism gyr[a‎, ‎b] that fulfills left associativity and left loop property‎. ‎The motivation behind this study is to generalize gyrogroups and semigroups‎, ‎which has led to the introduction of gyrosemigroups‎. ‎Accordingly‎, ‎in this paper‎, ‎some classes of gyrosemigroups are presented‎. ‎Also‎, ‎all gyrosemigroups of order 2 are characterized‎. ‎Furthermore‎, ‎the gyrosemigroups with an identity or a zero are studied‎.
doi_str_mv 10.22052/mir.2024.253354.1430
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3bdaf0531c904b6795f704777639bcaf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3bdaf0531c904b6795f704777639bcaf</doaj_id><sourcerecordid>oai_doaj_org_article_3bdaf0531c904b6795f704777639bcaf</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_3bdaf0531c904b6795f704777639bcaf3</originalsourceid><addsrcrecordid>eNqtjktKxEAURQtBsNFeglAb6PhSXzOUpv2MdOA8vFQq6WqSVHgVwRYEV-AiXYlRMnPq4HLgcLlcxi5zyIQALa76QJkAoTKhpdQqy5WEE7YSypqNKow-Y-uUDgAgihz0tVmx993r2EUKQ_v18cnnTHv_g5uu9RVhcIt-ojh6moJPi4gNvztSTL4PLcWXMXEcao58u0dCN3kKbziFOPC_xdk8Uu2Jiwt22mCX_HrhOXu43T1v7zd1xEM5UuiRjmXEUP6KSG2J8wnX-VJWNTagZe4KUJWxhW4sKGutkUXlsJH_ufUNSS52HQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploring‎ ‎the ‎Algebraic‎ ‎Properties‎ ‎of Gyrosemigroups and a Characterization of Gyrosemigroups of Order 2</title><source>DOAJ Directory of Open Access Journals</source><creator>Saeed Mirvakili ; Raufeh Manaviyat ; kazem Hamidizadeh</creator><creatorcontrib>Saeed Mirvakili ; Raufeh Manaviyat ; kazem Hamidizadeh</creatorcontrib><description>‎A significant development in the field of gyrogroups was the introduction of the space of all relativistically admissible velocities‎, ‎which brought gyrogroups into the mainstream‎. ‎A group has various generalizations‎, ‎one of which is the notion of gyrogroups‎. ‎Moreover‎, ‎for any pair (a‎, ‎b) in this structure‎, ‎there exists an automorphism gyr[a‎, ‎b] that fulfills left associativity and left loop property‎. ‎The motivation behind this study is to generalize gyrogroups and semigroups‎, ‎which has led to the introduction of gyrosemigroups‎. ‎Accordingly‎, ‎in this paper‎, ‎some classes of gyrosemigroups are presented‎. ‎Also‎, ‎all gyrosemigroups of order 2 are characterized‎. ‎Furthermore‎, ‎the gyrosemigroups with an identity or a zero are studied‎.</description><identifier>EISSN: 2476-4965</identifier><identifier>DOI: 10.22052/mir.2024.253354.1430</identifier><language>eng</language><publisher>University of Kashan</publisher><subject>groupoid ; gyrogroup ; gyrosemigroup ; semigroup</subject><ispartof>Mathematics interdisciplinary research (Online), 2024-09, Vol.9 (3), p.255-267</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,27905,27906</link.rule.ids></links><search><creatorcontrib>Saeed Mirvakili</creatorcontrib><creatorcontrib>Raufeh Manaviyat</creatorcontrib><creatorcontrib>kazem Hamidizadeh</creatorcontrib><title>Exploring‎ ‎the ‎Algebraic‎ ‎Properties‎ ‎of Gyrosemigroups and a Characterization of Gyrosemigroups of Order 2</title><title>Mathematics interdisciplinary research (Online)</title><description>‎A significant development in the field of gyrogroups was the introduction of the space of all relativistically admissible velocities‎, ‎which brought gyrogroups into the mainstream‎. ‎A group has various generalizations‎, ‎one of which is the notion of gyrogroups‎. ‎Moreover‎, ‎for any pair (a‎, ‎b) in this structure‎, ‎there exists an automorphism gyr[a‎, ‎b] that fulfills left associativity and left loop property‎. ‎The motivation behind this study is to generalize gyrogroups and semigroups‎, ‎which has led to the introduction of gyrosemigroups‎. ‎Accordingly‎, ‎in this paper‎, ‎some classes of gyrosemigroups are presented‎. ‎Also‎, ‎all gyrosemigroups of order 2 are characterized‎. ‎Furthermore‎, ‎the gyrosemigroups with an identity or a zero are studied‎.</description><subject>groupoid</subject><subject>gyrogroup</subject><subject>gyrosemigroup</subject><subject>semigroup</subject><issn>2476-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjktKxEAURQtBsNFeglAb6PhSXzOUpv2MdOA8vFQq6WqSVHgVwRYEV-AiXYlRMnPq4HLgcLlcxi5zyIQALa76QJkAoTKhpdQqy5WEE7YSypqNKow-Y-uUDgAgihz0tVmx993r2EUKQ_v18cnnTHv_g5uu9RVhcIt-ojh6moJPi4gNvztSTL4PLcWXMXEcao58u0dCN3kKbziFOPC_xdk8Uu2Jiwt22mCX_HrhOXu43T1v7zd1xEM5UuiRjmXEUP6KSG2J8wnX-VJWNTagZe4KUJWxhW4sKGutkUXlsJH_ufUNSS52HQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Saeed Mirvakili</creator><creator>Raufeh Manaviyat</creator><creator>kazem Hamidizadeh</creator><general>University of Kashan</general><scope>DOA</scope></search><sort><creationdate>20240901</creationdate><title>Exploring‎ ‎the ‎Algebraic‎ ‎Properties‎ ‎of Gyrosemigroups and a Characterization of Gyrosemigroups of Order 2</title><author>Saeed Mirvakili ; Raufeh Manaviyat ; kazem Hamidizadeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_3bdaf0531c904b6795f704777639bcaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>groupoid</topic><topic>gyrogroup</topic><topic>gyrosemigroup</topic><topic>semigroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeed Mirvakili</creatorcontrib><creatorcontrib>Raufeh Manaviyat</creatorcontrib><creatorcontrib>kazem Hamidizadeh</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics interdisciplinary research (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeed Mirvakili</au><au>Raufeh Manaviyat</au><au>kazem Hamidizadeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring‎ ‎the ‎Algebraic‎ ‎Properties‎ ‎of Gyrosemigroups and a Characterization of Gyrosemigroups of Order 2</atitle><jtitle>Mathematics interdisciplinary research (Online)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>9</volume><issue>3</issue><spage>255</spage><epage>267</epage><pages>255-267</pages><eissn>2476-4965</eissn><abstract>‎A significant development in the field of gyrogroups was the introduction of the space of all relativistically admissible velocities‎, ‎which brought gyrogroups into the mainstream‎. ‎A group has various generalizations‎, ‎one of which is the notion of gyrogroups‎. ‎Moreover‎, ‎for any pair (a‎, ‎b) in this structure‎, ‎there exists an automorphism gyr[a‎, ‎b] that fulfills left associativity and left loop property‎. ‎The motivation behind this study is to generalize gyrogroups and semigroups‎, ‎which has led to the introduction of gyrosemigroups‎. ‎Accordingly‎, ‎in this paper‎, ‎some classes of gyrosemigroups are presented‎. ‎Also‎, ‎all gyrosemigroups of order 2 are characterized‎. ‎Furthermore‎, ‎the gyrosemigroups with an identity or a zero are studied‎.</abstract><pub>University of Kashan</pub><doi>10.22052/mir.2024.253354.1430</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2476-4965
ispartof Mathematics interdisciplinary research (Online), 2024-09, Vol.9 (3), p.255-267
issn 2476-4965
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3bdaf0531c904b6795f704777639bcaf
source DOAJ Directory of Open Access Journals
subjects groupoid
gyrogroup
gyrosemigroup
semigroup
title Exploring‎ ‎the ‎Algebraic‎ ‎Properties‎ ‎of Gyrosemigroups and a Characterization of Gyrosemigroups of Order 2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%E2%80%8E%20%E2%80%8Ethe%20%E2%80%8EAlgebraic%E2%80%8E%20%E2%80%8EProperties%E2%80%8E%20%E2%80%8Eof%20Gyrosemigroups%20and%20a%20Characterization%20of%20Gyrosemigroups%20of%20Order%202&rft.jtitle=Mathematics%20interdisciplinary%20research%20(Online)&rft.au=Saeed%20Mirvakili&rft.date=2024-09-01&rft.volume=9&rft.issue=3&rft.spage=255&rft.epage=267&rft.pages=255-267&rft.eissn=2476-4965&rft_id=info:doi/10.22052/mir.2024.253354.1430&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_3bdaf0531c904b6795f704777639bcaf%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_3bdaf0531c904b6795f704777639bcaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true