Loading…
The microbial carbonate factory of Hamelin Pool, Shark Bay, Western Australia
Microbialites and peloids are commonly associated throughout the geologic record. Proterozoic carbonate megafacies are composed predominantly of micritic and peloidal limestones often interbedded with stromatolitic textures. The association is also common throughout carbonate ramps and platforms dur...
Saved in:
Published in: | Scientific reports 2022-07, Vol.12 (1), p.12902-12902, Article 12902 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-36aa52a55bb66354c850430d674a6cea15d0a9b2b70d309c922e50a9ec9c277a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-36aa52a55bb66354c850430d674a6cea15d0a9b2b70d309c922e50a9ec9c277a3 |
container_end_page | 12902 |
container_issue | 1 |
container_start_page | 12902 |
container_title | Scientific reports |
container_volume | 12 |
creator | Suosaari, Erica P. Reid, R. Pamela Mercadier, Christophe Vitek, Brooke E. Oehlert, Amanda M. Stolz, John F. Giusfredi, Paige E. Eberli, Gregor P. |
description | Microbialites and peloids are commonly associated throughout the geologic record. Proterozoic carbonate megafacies are composed predominantly of micritic and peloidal limestones often interbedded with stromatolitic textures. The association is also common throughout carbonate ramps and platforms during the Phanerozoic. Recent investigations reveal that Hamelin Pool, located in Shark Bay, Western Australia, is a microbial carbonate factory that provides a modern analog for the microbialite-micritic sediment facies associations that are so prevalent in the geologic record. Hamelin Pool contains the largest known living marine stromatolite system in the world. Although best known for the constructive microbial processes that lead to formation of these stromatolites, our comprehensive mapping has revealed that erosion and degradation of weakly lithified microbial mats in Hamelin Pool leads to the extensive production and accumulation of sand-sized micritic grains. Over 40 km
2
of upper intertidal shoreline in the pool contain unlithified to weakly lithified microbial pustular sheet mats, which erode to release irregular peloidal grains. In addition, over 20 km
2
of gelatinous microbial mats, with thin brittle layers of micrite, colonize subtidal pavements. When these gelatinous mats erode, the micritic layers break down to form platey, micritic intraclasts with irregular boundaries. Together, the irregular micritic grains from pustular sheet mats and gelatinous pavement mats make up nearly 26% of the total sediment in the pool, plausibly producing ~ 24,000 metric tons of microbial sediment per year. As such, Hamelin Pool can be seen as a microbial carbonate factory, with construction by lithifying microbial mats forming microbialites, and erosion and degradation of weakly lithified microbial mats resulting in extensive production of sand-sized micritic sediments. Insight from these modern examples may have direct applicability for recognition of sedimentary deposits of microbial origin in the geologic record. |
doi_str_mv | 10.1038/s41598-022-16651-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3c01c8e6989c4f1fbb873dde77f581b5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3c01c8e6989c4f1fbb873dde77f581b5</doaj_id><sourcerecordid>2696864548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-36aa52a55bb66354c850430d674a6cea15d0a9b2b70d309c922e50a9ec9c277a3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERattvwAnS1w4NOD_sS9IpQJaqahIFHG0xo6zmyWJi50gbT893qYCyqG-2Br_3tPMPIReUvKGEq7fZkGl0RVhrKJKSVrdPUNHjAhZMc7Y83_eh-gk5y0pRzIjqHmBDrk0hCkij9Dnm03AQ-dTdB302ENycYQp4Bb8FNMOxxZfwBD6bsRfYuxP8dcNpB_4PexO8feQp5BGfDbnKUHfwTE6aKHP4eThXqFvHz_cnF9UV9efLs_PriovaT1VXAFIBlI6pxSXwmtJBCeNqgUoH4DKhoBxzNWk4cR4w1iQpRK88ayuga_Q5eLbRNja29QNkHY2QmfvCzGtLaSp832w3BPqdVBGGy9a2jqna940oa5bqamTxevd4nU7uyE0Poz7WR6ZPv4Zu41dx1_WcC5Y6X-FXj8YpPhzLiuxQ5d96HsYQ5yzZcoorYQUuqCv_kO3cU5jWdWekppIKupCsYUqqeScQvunGUrsPny7hG9L-PY-fHtXRHwR5QKP65D-Wj-h-g1dCq_c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695805147</pqid></control><display><type>article</type><title>The microbial carbonate factory of Hamelin Pool, Shark Bay, Western Australia</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Suosaari, Erica P. ; Reid, R. Pamela ; Mercadier, Christophe ; Vitek, Brooke E. ; Oehlert, Amanda M. ; Stolz, John F. ; Giusfredi, Paige E. ; Eberli, Gregor P.</creator><creatorcontrib>Suosaari, Erica P. ; Reid, R. Pamela ; Mercadier, Christophe ; Vitek, Brooke E. ; Oehlert, Amanda M. ; Stolz, John F. ; Giusfredi, Paige E. ; Eberli, Gregor P.</creatorcontrib><description>Microbialites and peloids are commonly associated throughout the geologic record. Proterozoic carbonate megafacies are composed predominantly of micritic and peloidal limestones often interbedded with stromatolitic textures. The association is also common throughout carbonate ramps and platforms during the Phanerozoic. Recent investigations reveal that Hamelin Pool, located in Shark Bay, Western Australia, is a microbial carbonate factory that provides a modern analog for the microbialite-micritic sediment facies associations that are so prevalent in the geologic record. Hamelin Pool contains the largest known living marine stromatolite system in the world. Although best known for the constructive microbial processes that lead to formation of these stromatolites, our comprehensive mapping has revealed that erosion and degradation of weakly lithified microbial mats in Hamelin Pool leads to the extensive production and accumulation of sand-sized micritic grains. Over 40 km
2
of upper intertidal shoreline in the pool contain unlithified to weakly lithified microbial pustular sheet mats, which erode to release irregular peloidal grains. In addition, over 20 km
2
of gelatinous microbial mats, with thin brittle layers of micrite, colonize subtidal pavements. When these gelatinous mats erode, the micritic layers break down to form platey, micritic intraclasts with irregular boundaries. Together, the irregular micritic grains from pustular sheet mats and gelatinous pavement mats make up nearly 26% of the total sediment in the pool, plausibly producing ~ 24,000 metric tons of microbial sediment per year. As such, Hamelin Pool can be seen as a microbial carbonate factory, with construction by lithifying microbial mats forming microbialites, and erosion and degradation of weakly lithified microbial mats resulting in extensive production of sand-sized micritic sediments. Insight from these modern examples may have direct applicability for recognition of sedimentary deposits of microbial origin in the geologic record.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-16651-z</identifier><identifier>PMID: 35902605</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151 ; 704/2151/3930 ; Biodegradation ; Humanities and Social Sciences ; Microbial mats ; multidisciplinary ; Sand ; Science ; Science (multidisciplinary) ; Sediments ; Sharks ; Soil erosion ; Stromatolites</subject><ispartof>Scientific reports, 2022-07, Vol.12 (1), p.12902-12902, Article 12902</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-36aa52a55bb66354c850430d674a6cea15d0a9b2b70d309c922e50a9ec9c277a3</citedby><cites>FETCH-LOGICAL-c517t-36aa52a55bb66354c850430d674a6cea15d0a9b2b70d309c922e50a9ec9c277a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2695805147/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2695805147?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Suosaari, Erica P.</creatorcontrib><creatorcontrib>Reid, R. Pamela</creatorcontrib><creatorcontrib>Mercadier, Christophe</creatorcontrib><creatorcontrib>Vitek, Brooke E.</creatorcontrib><creatorcontrib>Oehlert, Amanda M.</creatorcontrib><creatorcontrib>Stolz, John F.</creatorcontrib><creatorcontrib>Giusfredi, Paige E.</creatorcontrib><creatorcontrib>Eberli, Gregor P.</creatorcontrib><title>The microbial carbonate factory of Hamelin Pool, Shark Bay, Western Australia</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Microbialites and peloids are commonly associated throughout the geologic record. Proterozoic carbonate megafacies are composed predominantly of micritic and peloidal limestones often interbedded with stromatolitic textures. The association is also common throughout carbonate ramps and platforms during the Phanerozoic. Recent investigations reveal that Hamelin Pool, located in Shark Bay, Western Australia, is a microbial carbonate factory that provides a modern analog for the microbialite-micritic sediment facies associations that are so prevalent in the geologic record. Hamelin Pool contains the largest known living marine stromatolite system in the world. Although best known for the constructive microbial processes that lead to formation of these stromatolites, our comprehensive mapping has revealed that erosion and degradation of weakly lithified microbial mats in Hamelin Pool leads to the extensive production and accumulation of sand-sized micritic grains. Over 40 km
2
of upper intertidal shoreline in the pool contain unlithified to weakly lithified microbial pustular sheet mats, which erode to release irregular peloidal grains. In addition, over 20 km
2
of gelatinous microbial mats, with thin brittle layers of micrite, colonize subtidal pavements. When these gelatinous mats erode, the micritic layers break down to form platey, micritic intraclasts with irregular boundaries. Together, the irregular micritic grains from pustular sheet mats and gelatinous pavement mats make up nearly 26% of the total sediment in the pool, plausibly producing ~ 24,000 metric tons of microbial sediment per year. As such, Hamelin Pool can be seen as a microbial carbonate factory, with construction by lithifying microbial mats forming microbialites, and erosion and degradation of weakly lithified microbial mats resulting in extensive production of sand-sized micritic sediments. Insight from these modern examples may have direct applicability for recognition of sedimentary deposits of microbial origin in the geologic record.</description><subject>704/2151</subject><subject>704/2151/3930</subject><subject>Biodegradation</subject><subject>Humanities and Social Sciences</subject><subject>Microbial mats</subject><subject>multidisciplinary</subject><subject>Sand</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sediments</subject><subject>Sharks</subject><subject>Soil erosion</subject><subject>Stromatolites</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxS1ERattvwAnS1w4NOD_sS9IpQJaqahIFHG0xo6zmyWJi50gbT893qYCyqG-2Br_3tPMPIReUvKGEq7fZkGl0RVhrKJKSVrdPUNHjAhZMc7Y83_eh-gk5y0pRzIjqHmBDrk0hCkij9Dnm03AQ-dTdB302ENycYQp4Bb8FNMOxxZfwBD6bsRfYuxP8dcNpB_4PexO8feQp5BGfDbnKUHfwTE6aKHP4eThXqFvHz_cnF9UV9efLs_PriovaT1VXAFIBlI6pxSXwmtJBCeNqgUoH4DKhoBxzNWk4cR4w1iQpRK88ayuga_Q5eLbRNja29QNkHY2QmfvCzGtLaSp832w3BPqdVBGGy9a2jqna940oa5bqamTxevd4nU7uyE0Poz7WR6ZPv4Zu41dx1_WcC5Y6X-FXj8YpPhzLiuxQ5d96HsYQ5yzZcoorYQUuqCv_kO3cU5jWdWekppIKupCsYUqqeScQvunGUrsPny7hG9L-PY-fHtXRHwR5QKP65D-Wj-h-g1dCq_c</recordid><startdate>20220728</startdate><enddate>20220728</enddate><creator>Suosaari, Erica P.</creator><creator>Reid, R. Pamela</creator><creator>Mercadier, Christophe</creator><creator>Vitek, Brooke E.</creator><creator>Oehlert, Amanda M.</creator><creator>Stolz, John F.</creator><creator>Giusfredi, Paige E.</creator><creator>Eberli, Gregor P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220728</creationdate><title>The microbial carbonate factory of Hamelin Pool, Shark Bay, Western Australia</title><author>Suosaari, Erica P. ; Reid, R. Pamela ; Mercadier, Christophe ; Vitek, Brooke E. ; Oehlert, Amanda M. ; Stolz, John F. ; Giusfredi, Paige E. ; Eberli, Gregor P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-36aa52a55bb66354c850430d674a6cea15d0a9b2b70d309c922e50a9ec9c277a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>704/2151</topic><topic>704/2151/3930</topic><topic>Biodegradation</topic><topic>Humanities and Social Sciences</topic><topic>Microbial mats</topic><topic>multidisciplinary</topic><topic>Sand</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sediments</topic><topic>Sharks</topic><topic>Soil erosion</topic><topic>Stromatolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suosaari, Erica P.</creatorcontrib><creatorcontrib>Reid, R. Pamela</creatorcontrib><creatorcontrib>Mercadier, Christophe</creatorcontrib><creatorcontrib>Vitek, Brooke E.</creatorcontrib><creatorcontrib>Oehlert, Amanda M.</creatorcontrib><creatorcontrib>Stolz, John F.</creatorcontrib><creatorcontrib>Giusfredi, Paige E.</creatorcontrib><creatorcontrib>Eberli, Gregor P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suosaari, Erica P.</au><au>Reid, R. Pamela</au><au>Mercadier, Christophe</au><au>Vitek, Brooke E.</au><au>Oehlert, Amanda M.</au><au>Stolz, John F.</au><au>Giusfredi, Paige E.</au><au>Eberli, Gregor P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The microbial carbonate factory of Hamelin Pool, Shark Bay, Western Australia</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2022-07-28</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>12902</spage><epage>12902</epage><pages>12902-12902</pages><artnum>12902</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Microbialites and peloids are commonly associated throughout the geologic record. Proterozoic carbonate megafacies are composed predominantly of micritic and peloidal limestones often interbedded with stromatolitic textures. The association is also common throughout carbonate ramps and platforms during the Phanerozoic. Recent investigations reveal that Hamelin Pool, located in Shark Bay, Western Australia, is a microbial carbonate factory that provides a modern analog for the microbialite-micritic sediment facies associations that are so prevalent in the geologic record. Hamelin Pool contains the largest known living marine stromatolite system in the world. Although best known for the constructive microbial processes that lead to formation of these stromatolites, our comprehensive mapping has revealed that erosion and degradation of weakly lithified microbial mats in Hamelin Pool leads to the extensive production and accumulation of sand-sized micritic grains. Over 40 km
2
of upper intertidal shoreline in the pool contain unlithified to weakly lithified microbial pustular sheet mats, which erode to release irregular peloidal grains. In addition, over 20 km
2
of gelatinous microbial mats, with thin brittle layers of micrite, colonize subtidal pavements. When these gelatinous mats erode, the micritic layers break down to form platey, micritic intraclasts with irregular boundaries. Together, the irregular micritic grains from pustular sheet mats and gelatinous pavement mats make up nearly 26% of the total sediment in the pool, plausibly producing ~ 24,000 metric tons of microbial sediment per year. As such, Hamelin Pool can be seen as a microbial carbonate factory, with construction by lithifying microbial mats forming microbialites, and erosion and degradation of weakly lithified microbial mats resulting in extensive production of sand-sized micritic sediments. Insight from these modern examples may have direct applicability for recognition of sedimentary deposits of microbial origin in the geologic record.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35902605</pmid><doi>10.1038/s41598-022-16651-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-07, Vol.12 (1), p.12902-12902, Article 12902 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3c01c8e6989c4f1fbb873dde77f581b5 |
source | PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 704/2151 704/2151/3930 Biodegradation Humanities and Social Sciences Microbial mats multidisciplinary Sand Science Science (multidisciplinary) Sediments Sharks Soil erosion Stromatolites |
title | The microbial carbonate factory of Hamelin Pool, Shark Bay, Western Australia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20microbial%20carbonate%20factory%20of%20Hamelin%20Pool,%20Shark%20Bay,%20Western%20Australia&rft.jtitle=Scientific%20reports&rft.au=Suosaari,%20Erica%20P.&rft.date=2022-07-28&rft.volume=12&rft.issue=1&rft.spage=12902&rft.epage=12902&rft.pages=12902-12902&rft.artnum=12902&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-16651-z&rft_dat=%3Cproquest_doaj_%3E2696864548%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-36aa52a55bb66354c850430d674a6cea15d0a9b2b70d309c922e50a9ec9c277a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2695805147&rft_id=info:pmid/35902605&rfr_iscdi=true |