Loading…

A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices

Inertial electrostatic confinement fusion (IECF) devices often use two concentric spherical electrodes to converge ions in a plasma electrostatically. Using a highly transparent inner cathode, the ions can move through the cathode and collide at the center to undergo fusion reactions. This is a simp...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-01, Vol.14 (1), p.2261-2261, Article 2261
Main Authors: Wulfkühler, Jan-Philipp, Nguyen, Hai-Dang, Peiffer, Leo, Tajmar, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c436t-8f8254b96c31610160b1745247f52405099ce2a5411428533b6ef60106a9e8f73
container_end_page 2261
container_issue 1
container_start_page 2261
container_title Scientific reports
container_volume 14
creator Wulfkühler, Jan-Philipp
Nguyen, Hai-Dang
Peiffer, Leo
Tajmar, Martin
description Inertial electrostatic confinement fusion (IECF) devices often use two concentric spherical electrodes to converge ions in a plasma electrostatically. Using a highly transparent inner cathode, the ions can move through the cathode and collide at the center to undergo fusion reactions. This is a simple method to build a neutron source. Past research has focused chiefly on cathode “grids” manufactured by joining metal wire loops or disc-shaped elements via spot welding. There are two common geometries: “Globe” grids with a distinct latitude-longitude structure and “symmetric” grids with even-sized triangular-shaped apertures. Recent advances in additive manufacturing have opened the way to manufacturing a third class of grids in which the apertures are evenly distributed over the grid surface and have either circular or polygonal shaped apertures - here called “regular” grids. These three types are analyzed and compared based on a set of metrics, including transparency, homogeneity of aperture size, and the regularity of aperture distribution. It is shown that every type of grid comes with different advantages and disadvantages. The analysis focuses on grid geometries with 6 to 120 apertures.
doi_str_mv 10.1038/s41598-024-52173-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3c0e9e776f03432db5798a7a12698c4a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3c0e9e776f03432db5798a7a12698c4a</doaj_id><sourcerecordid>2919739970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-8f8254b96c31610160b1745247f52405099ce2a5411428533b6ef60106a9e8f73</originalsourceid><addsrcrecordid>eNp9Ustu1TAQjRCIVqU_wAJZYsMm4Ff8WFYVj0qVuoG15Tjje32VxMF2kPoffDC-N6WtWGBZHmvmzJnx-DTNW4I_EszUp8xJp1WLKW87SiRrxYvmnGLetZRR-vLZ_ay5zPmA6-qo5kS_bs6YolIpLs6b31co3-cCky3BIbssKVq3RyWisgc0xQHGMcw7ZOcBuTgtNoUcZxT9Kb6DOEFJAfLRk5c9pODsiGAEV1JNzijMdUMq4cmdy6mYi7OvoQnmgvyaQ6Ud4FdwkN80r7wdM1w-2Ivmx5fP36-_tbd3X2-ur25bx5korfKKdrzXwjEiCCYC90TyjnLp64E7rLUDajtOCKeqY6wX4AUmWFgNykt20dxsvEO0B7OkMNl0b6IN5uSIaWds7dyNYJjDoEFK4THjjA59J7Wy0hIqtHLcVq4PG1ed4M8VcjFTyK5Oz84Q12yoJloyrSWu0Pf_QA9xTXN96RGlJNWMq4qiG8rVieUE_rFBgs1RAmaTgKkSMCcJGFGT3j1Qr_0Ew2PK3w-vALYBcg3NO0hPtf9D-wcslrwb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918729348</pqid></control><display><type>article</type><title>A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wulfkühler, Jan-Philipp ; Nguyen, Hai-Dang ; Peiffer, Leo ; Tajmar, Martin</creator><creatorcontrib>Wulfkühler, Jan-Philipp ; Nguyen, Hai-Dang ; Peiffer, Leo ; Tajmar, Martin</creatorcontrib><description>Inertial electrostatic confinement fusion (IECF) devices often use two concentric spherical electrodes to converge ions in a plasma electrostatically. Using a highly transparent inner cathode, the ions can move through the cathode and collide at the center to undergo fusion reactions. This is a simple method to build a neutron source. Past research has focused chiefly on cathode “grids” manufactured by joining metal wire loops or disc-shaped elements via spot welding. There are two common geometries: “Globe” grids with a distinct latitude-longitude structure and “symmetric” grids with even-sized triangular-shaped apertures. Recent advances in additive manufacturing have opened the way to manufacturing a third class of grids in which the apertures are evenly distributed over the grid surface and have either circular or polygonal shaped apertures - here called “regular” grids. These three types are analyzed and compared based on a set of metrics, including transparency, homogeneity of aperture size, and the regularity of aperture distribution. It is shown that every type of grid comes with different advantages and disadvantages. The analysis focuses on grid geometries with 6 to 120 apertures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-52173-6</identifier><identifier>PMID: 38278846</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/4091/4093 ; 639/766/387/1126 ; Electrodes ; Humanities and Social Sciences ; Ions ; multidisciplinary ; Neutrons ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2024-01, Vol.14 (1), p.2261-2261, Article 2261</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c436t-8f8254b96c31610160b1745247f52405099ce2a5411428533b6ef60106a9e8f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918729348/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918729348?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38278846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wulfkühler, Jan-Philipp</creatorcontrib><creatorcontrib>Nguyen, Hai-Dang</creatorcontrib><creatorcontrib>Peiffer, Leo</creatorcontrib><creatorcontrib>Tajmar, Martin</creatorcontrib><title>A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Inertial electrostatic confinement fusion (IECF) devices often use two concentric spherical electrodes to converge ions in a plasma electrostatically. Using a highly transparent inner cathode, the ions can move through the cathode and collide at the center to undergo fusion reactions. This is a simple method to build a neutron source. Past research has focused chiefly on cathode “grids” manufactured by joining metal wire loops or disc-shaped elements via spot welding. There are two common geometries: “Globe” grids with a distinct latitude-longitude structure and “symmetric” grids with even-sized triangular-shaped apertures. Recent advances in additive manufacturing have opened the way to manufacturing a third class of grids in which the apertures are evenly distributed over the grid surface and have either circular or polygonal shaped apertures - here called “regular” grids. These three types are analyzed and compared based on a set of metrics, including transparency, homogeneity of aperture size, and the regularity of aperture distribution. It is shown that every type of grid comes with different advantages and disadvantages. The analysis focuses on grid geometries with 6 to 120 apertures.</description><subject>639/4077/4091/4093</subject><subject>639/766/387/1126</subject><subject>Electrodes</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>multidisciplinary</subject><subject>Neutrons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Ustu1TAQjRCIVqU_wAJZYsMm4Ff8WFYVj0qVuoG15Tjje32VxMF2kPoffDC-N6WtWGBZHmvmzJnx-DTNW4I_EszUp8xJp1WLKW87SiRrxYvmnGLetZRR-vLZ_ay5zPmA6-qo5kS_bs6YolIpLs6b31co3-cCky3BIbssKVq3RyWisgc0xQHGMcw7ZOcBuTgtNoUcZxT9Kb6DOEFJAfLRk5c9pODsiGAEV1JNzijMdUMq4cmdy6mYi7OvoQnmgvyaQ6Ud4FdwkN80r7wdM1w-2Ivmx5fP36-_tbd3X2-ur25bx5korfKKdrzXwjEiCCYC90TyjnLp64E7rLUDajtOCKeqY6wX4AUmWFgNykt20dxsvEO0B7OkMNl0b6IN5uSIaWds7dyNYJjDoEFK4THjjA59J7Wy0hIqtHLcVq4PG1ed4M8VcjFTyK5Oz84Q12yoJloyrSWu0Pf_QA9xTXN96RGlJNWMq4qiG8rVieUE_rFBgs1RAmaTgKkSMCcJGFGT3j1Qr_0Ew2PK3w-vALYBcg3NO0hPtf9D-wcslrwb</recordid><startdate>20240127</startdate><enddate>20240127</enddate><creator>Wulfkühler, Jan-Philipp</creator><creator>Nguyen, Hai-Dang</creator><creator>Peiffer, Leo</creator><creator>Tajmar, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20240127</creationdate><title>A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices</title><author>Wulfkühler, Jan-Philipp ; Nguyen, Hai-Dang ; Peiffer, Leo ; Tajmar, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-8f8254b96c31610160b1745247f52405099ce2a5411428533b6ef60106a9e8f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/4077/4091/4093</topic><topic>639/766/387/1126</topic><topic>Electrodes</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>multidisciplinary</topic><topic>Neutrons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wulfkühler, Jan-Philipp</creatorcontrib><creatorcontrib>Nguyen, Hai-Dang</creatorcontrib><creatorcontrib>Peiffer, Leo</creatorcontrib><creatorcontrib>Tajmar, Martin</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wulfkühler, Jan-Philipp</au><au>Nguyen, Hai-Dang</au><au>Peiffer, Leo</au><au>Tajmar, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-01-27</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>2261</spage><epage>2261</epage><pages>2261-2261</pages><artnum>2261</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Inertial electrostatic confinement fusion (IECF) devices often use two concentric spherical electrodes to converge ions in a plasma electrostatically. Using a highly transparent inner cathode, the ions can move through the cathode and collide at the center to undergo fusion reactions. This is a simple method to build a neutron source. Past research has focused chiefly on cathode “grids” manufactured by joining metal wire loops or disc-shaped elements via spot welding. There are two common geometries: “Globe” grids with a distinct latitude-longitude structure and “symmetric” grids with even-sized triangular-shaped apertures. Recent advances in additive manufacturing have opened the way to manufacturing a third class of grids in which the apertures are evenly distributed over the grid surface and have either circular or polygonal shaped apertures - here called “regular” grids. These three types are analyzed and compared based on a set of metrics, including transparency, homogeneity of aperture size, and the regularity of aperture distribution. It is shown that every type of grid comes with different advantages and disadvantages. The analysis focuses on grid geometries with 6 to 120 apertures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38278846</pmid><doi>10.1038/s41598-024-52173-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-01, Vol.14 (1), p.2261-2261, Article 2261
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3c0e9e776f03432db5798a7a12698c4a
source PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/4077/4091/4093
639/766/387/1126
Electrodes
Humanities and Social Sciences
Ions
multidisciplinary
Neutrons
Science
Science (multidisciplinary)
title A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20approach%20to%20the%20modelling%20and%20comparison%20of%20the%20geometries%20of%20spherical%20electrodes%20in%20inertial%20electrostatic%20confinement%20fusion%20devices&rft.jtitle=Scientific%20reports&rft.au=Wulfk%C3%BChler,%20Jan-Philipp&rft.date=2024-01-27&rft.volume=14&rft.issue=1&rft.spage=2261&rft.epage=2261&rft.pages=2261-2261&rft.artnum=2261&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-52173-6&rft_dat=%3Cproquest_doaj_%3E2919739970%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-8f8254b96c31610160b1745247f52405099ce2a5411428533b6ef60106a9e8f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918729348&rft_id=info:pmid/38278846&rfr_iscdi=true