Loading…
A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices
Inertial electrostatic confinement fusion (IECF) devices often use two concentric spherical electrodes to converge ions in a plasma electrostatically. Using a highly transparent inner cathode, the ions can move through the cathode and collide at the center to undergo fusion reactions. This is a simp...
Saved in:
Published in: | Scientific reports 2024-01, Vol.14 (1), p.2261-2261, Article 2261 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-8f8254b96c31610160b1745247f52405099ce2a5411428533b6ef60106a9e8f73 |
container_end_page | 2261 |
container_issue | 1 |
container_start_page | 2261 |
container_title | Scientific reports |
container_volume | 14 |
creator | Wulfkühler, Jan-Philipp Nguyen, Hai-Dang Peiffer, Leo Tajmar, Martin |
description | Inertial electrostatic confinement fusion (IECF) devices often use two concentric spherical electrodes to converge ions in a plasma electrostatically. Using a highly transparent inner cathode, the ions can move through the cathode and collide at the center to undergo fusion reactions. This is a simple method to build a neutron source. Past research has focused chiefly on cathode “grids” manufactured by joining metal wire loops or disc-shaped elements via spot welding. There are two common geometries: “Globe” grids with a distinct latitude-longitude structure and “symmetric” grids with even-sized triangular-shaped apertures. Recent advances in additive manufacturing have opened the way to manufacturing a third class of grids in which the apertures are evenly distributed over the grid surface and have either circular or polygonal shaped apertures - here called “regular” grids. These three types are analyzed and compared based on a set of metrics, including transparency, homogeneity of aperture size, and the regularity of aperture distribution. It is shown that every type of grid comes with different advantages and disadvantages. The analysis focuses on grid geometries with 6 to 120 apertures. |
doi_str_mv | 10.1038/s41598-024-52173-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3c0e9e776f03432db5798a7a12698c4a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3c0e9e776f03432db5798a7a12698c4a</doaj_id><sourcerecordid>2919739970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-8f8254b96c31610160b1745247f52405099ce2a5411428533b6ef60106a9e8f73</originalsourceid><addsrcrecordid>eNp9Ustu1TAQjRCIVqU_wAJZYsMm4Ff8WFYVj0qVuoG15Tjje32VxMF2kPoffDC-N6WtWGBZHmvmzJnx-DTNW4I_EszUp8xJp1WLKW87SiRrxYvmnGLetZRR-vLZ_ay5zPmA6-qo5kS_bs6YolIpLs6b31co3-cCky3BIbssKVq3RyWisgc0xQHGMcw7ZOcBuTgtNoUcZxT9Kb6DOEFJAfLRk5c9pODsiGAEV1JNzijMdUMq4cmdy6mYi7OvoQnmgvyaQ6Ud4FdwkN80r7wdM1w-2Ivmx5fP36-_tbd3X2-ur25bx5korfKKdrzXwjEiCCYC90TyjnLp64E7rLUDajtOCKeqY6wX4AUmWFgNykt20dxsvEO0B7OkMNl0b6IN5uSIaWds7dyNYJjDoEFK4THjjA59J7Wy0hIqtHLcVq4PG1ed4M8VcjFTyK5Oz84Q12yoJloyrSWu0Pf_QA9xTXN96RGlJNWMq4qiG8rVieUE_rFBgs1RAmaTgKkSMCcJGFGT3j1Qr_0Ew2PK3w-vALYBcg3NO0hPtf9D-wcslrwb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918729348</pqid></control><display><type>article</type><title>A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wulfkühler, Jan-Philipp ; Nguyen, Hai-Dang ; Peiffer, Leo ; Tajmar, Martin</creator><creatorcontrib>Wulfkühler, Jan-Philipp ; Nguyen, Hai-Dang ; Peiffer, Leo ; Tajmar, Martin</creatorcontrib><description>Inertial electrostatic confinement fusion (IECF) devices often use two concentric spherical electrodes to converge ions in a plasma electrostatically. Using a highly transparent inner cathode, the ions can move through the cathode and collide at the center to undergo fusion reactions. This is a simple method to build a neutron source. Past research has focused chiefly on cathode “grids” manufactured by joining metal wire loops or disc-shaped elements via spot welding. There are two common geometries: “Globe” grids with a distinct latitude-longitude structure and “symmetric” grids with even-sized triangular-shaped apertures. Recent advances in additive manufacturing have opened the way to manufacturing a third class of grids in which the apertures are evenly distributed over the grid surface and have either circular or polygonal shaped apertures - here called “regular” grids. These three types are analyzed and compared based on a set of metrics, including transparency, homogeneity of aperture size, and the regularity of aperture distribution. It is shown that every type of grid comes with different advantages and disadvantages. The analysis focuses on grid geometries with 6 to 120 apertures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-52173-6</identifier><identifier>PMID: 38278846</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/4091/4093 ; 639/766/387/1126 ; Electrodes ; Humanities and Social Sciences ; Ions ; multidisciplinary ; Neutrons ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2024-01, Vol.14 (1), p.2261-2261, Article 2261</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c436t-8f8254b96c31610160b1745247f52405099ce2a5411428533b6ef60106a9e8f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918729348/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918729348?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38278846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wulfkühler, Jan-Philipp</creatorcontrib><creatorcontrib>Nguyen, Hai-Dang</creatorcontrib><creatorcontrib>Peiffer, Leo</creatorcontrib><creatorcontrib>Tajmar, Martin</creatorcontrib><title>A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Inertial electrostatic confinement fusion (IECF) devices often use two concentric spherical electrodes to converge ions in a plasma electrostatically. Using a highly transparent inner cathode, the ions can move through the cathode and collide at the center to undergo fusion reactions. This is a simple method to build a neutron source. Past research has focused chiefly on cathode “grids” manufactured by joining metal wire loops or disc-shaped elements via spot welding. There are two common geometries: “Globe” grids with a distinct latitude-longitude structure and “symmetric” grids with even-sized triangular-shaped apertures. Recent advances in additive manufacturing have opened the way to manufacturing a third class of grids in which the apertures are evenly distributed over the grid surface and have either circular or polygonal shaped apertures - here called “regular” grids. These three types are analyzed and compared based on a set of metrics, including transparency, homogeneity of aperture size, and the regularity of aperture distribution. It is shown that every type of grid comes with different advantages and disadvantages. The analysis focuses on grid geometries with 6 to 120 apertures.</description><subject>639/4077/4091/4093</subject><subject>639/766/387/1126</subject><subject>Electrodes</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>multidisciplinary</subject><subject>Neutrons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Ustu1TAQjRCIVqU_wAJZYsMm4Ff8WFYVj0qVuoG15Tjje32VxMF2kPoffDC-N6WtWGBZHmvmzJnx-DTNW4I_EszUp8xJp1WLKW87SiRrxYvmnGLetZRR-vLZ_ay5zPmA6-qo5kS_bs6YolIpLs6b31co3-cCky3BIbssKVq3RyWisgc0xQHGMcw7ZOcBuTgtNoUcZxT9Kb6DOEFJAfLRk5c9pODsiGAEV1JNzijMdUMq4cmdy6mYi7OvoQnmgvyaQ6Ud4FdwkN80r7wdM1w-2Ivmx5fP36-_tbd3X2-ur25bx5korfKKdrzXwjEiCCYC90TyjnLp64E7rLUDajtOCKeqY6wX4AUmWFgNykt20dxsvEO0B7OkMNl0b6IN5uSIaWds7dyNYJjDoEFK4THjjA59J7Wy0hIqtHLcVq4PG1ed4M8VcjFTyK5Oz84Q12yoJloyrSWu0Pf_QA9xTXN96RGlJNWMq4qiG8rVieUE_rFBgs1RAmaTgKkSMCcJGFGT3j1Qr_0Ew2PK3w-vALYBcg3NO0hPtf9D-wcslrwb</recordid><startdate>20240127</startdate><enddate>20240127</enddate><creator>Wulfkühler, Jan-Philipp</creator><creator>Nguyen, Hai-Dang</creator><creator>Peiffer, Leo</creator><creator>Tajmar, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20240127</creationdate><title>A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices</title><author>Wulfkühler, Jan-Philipp ; Nguyen, Hai-Dang ; Peiffer, Leo ; Tajmar, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-8f8254b96c31610160b1745247f52405099ce2a5411428533b6ef60106a9e8f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/4077/4091/4093</topic><topic>639/766/387/1126</topic><topic>Electrodes</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>multidisciplinary</topic><topic>Neutrons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wulfkühler, Jan-Philipp</creatorcontrib><creatorcontrib>Nguyen, Hai-Dang</creatorcontrib><creatorcontrib>Peiffer, Leo</creatorcontrib><creatorcontrib>Tajmar, Martin</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wulfkühler, Jan-Philipp</au><au>Nguyen, Hai-Dang</au><au>Peiffer, Leo</au><au>Tajmar, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-01-27</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>2261</spage><epage>2261</epage><pages>2261-2261</pages><artnum>2261</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Inertial electrostatic confinement fusion (IECF) devices often use two concentric spherical electrodes to converge ions in a plasma electrostatically. Using a highly transparent inner cathode, the ions can move through the cathode and collide at the center to undergo fusion reactions. This is a simple method to build a neutron source. Past research has focused chiefly on cathode “grids” manufactured by joining metal wire loops or disc-shaped elements via spot welding. There are two common geometries: “Globe” grids with a distinct latitude-longitude structure and “symmetric” grids with even-sized triangular-shaped apertures. Recent advances in additive manufacturing have opened the way to manufacturing a third class of grids in which the apertures are evenly distributed over the grid surface and have either circular or polygonal shaped apertures - here called “regular” grids. These three types are analyzed and compared based on a set of metrics, including transparency, homogeneity of aperture size, and the regularity of aperture distribution. It is shown that every type of grid comes with different advantages and disadvantages. The analysis focuses on grid geometries with 6 to 120 apertures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38278846</pmid><doi>10.1038/s41598-024-52173-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-01, Vol.14 (1), p.2261-2261, Article 2261 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3c0e9e776f03432db5798a7a12698c4a |
source | PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/4077/4091/4093 639/766/387/1126 Electrodes Humanities and Social Sciences Ions multidisciplinary Neutrons Science Science (multidisciplinary) |
title | A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20approach%20to%20the%20modelling%20and%20comparison%20of%20the%20geometries%20of%20spherical%20electrodes%20in%20inertial%20electrostatic%20confinement%20fusion%20devices&rft.jtitle=Scientific%20reports&rft.au=Wulfk%C3%BChler,%20Jan-Philipp&rft.date=2024-01-27&rft.volume=14&rft.issue=1&rft.spage=2261&rft.epage=2261&rft.pages=2261-2261&rft.artnum=2261&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-52173-6&rft_dat=%3Cproquest_doaj_%3E2919739970%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-8f8254b96c31610160b1745247f52405099ce2a5411428533b6ef60106a9e8f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918729348&rft_id=info:pmid/38278846&rfr_iscdi=true |