Loading…

Hierarchical Frequency-dependent Chance Constrained Unit Commitment for Bulk AC/DC Hybrid Power Systems with Wind Power Generation

As the steady-state frequency of an actual power system decreases from its nominal value, the composite load of the system generally responds positively to lower power consumption, and vice versa. It is believed that this load frequency damping (LFD) effect will be artificially enhanced, i.e., sensi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modern power systems and clean energy 2023-07, Vol.11 (4), p.1053-1064
Main Authors: Rui Chen, Deping Ke, Yuanzhang Sun, C. Y. Chung, Haotian Wu, Siyang Liao, Jian Xu, Congying Wei
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As the steady-state frequency of an actual power system decreases from its nominal value, the composite load of the system generally responds positively to lower power consumption, and vice versa. It is believed that this load frequency damping (LFD) effect will be artificially enhanced, i.e., sensitivities of loads with respect to operational frequency will increase, in future power systems. Thus, for wind-integrated power systems, this paper proposes a frequency-dependent chance constrained unit commitment (FDCCUC) model that employs the operational frequency as a dispatching variable so that the LFD effect-based load power can act as a supplemental reserve. Because the frequency deviation is safely restricted, this low-cost reserve can be sufficiently exerted to upgrade the wind power accommodation capability of a power system that is normally confined by an inadequate reserve to cope with uncertain wind power forecasting error. Moreover, when the FDCCUC model is applied to a bulk AC/DC hybrid power system consisting of several independently operated regional AC grids interconnected by DC tie-lines, a hierarchically implemented searching algorithm is proposed to protect private scheduling information of the regional AC grids. Simulations on a 2-area 6-bus system and a 3-area 354-bus system verify the effectiveness of the FDCCUC model and hierarchical searching algorithm.
ISSN:2196-5420
DOI:10.35833/MPCE.2022.000138