Loading…
Accurate Stride-Length Estimation Based on LT-StrideNet for Pedestrian Dead Reckoning Using a Shank-Mounted Sensor
Pedestrian dead reckoning (PDR) is a self-contained positioning technology and has been a significant research topic in recent years. Pedestrian-stride-length estimation is the core part of the PDR system and directly affects the performance of the PDR. The current stride-length-estimation method is...
Saved in:
Published in: | Micromachines (Basel) 2023-05, Vol.14 (6), p.1170 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pedestrian dead reckoning (PDR) is a self-contained positioning technology and has been a significant research topic in recent years. Pedestrian-stride-length estimation is the core part of the PDR system and directly affects the performance of the PDR. The current stride-length-estimation method is difficult to adapt to changes in pedestrian walking speed, which leads to a rapid increase in the error of the PDR. In this paper, a new deep-learning model based on long short-term memory (LSTM) and Transformer, LT-StrideNet, is proposed to estimate pedestrian-stride length. Next, a shank-mounted PDR framework is built based on the proposed stride-length-estimation method. In the PDR framework, the detection of pedestrian stride is achieved by peak detection with a dynamic threshold. An extended Kalman filter (EKF) model is adopted to fuse the gyroscope, accelerometer, and magnetometer. The experimental results show that the proposed stride-length-estimation method can effectively adapt to changes in pedestrian walking speed, and our PDR framework has excellent positioning performance. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi14061170 |