Loading…

Sitting Interruption Modalities during Prolonged Sitting Acutely Improve Postprandial Metabolome in a Crossover Pilot Trial among Postmenopausal Women

Older adults sit during most hours of the day; more than 30% are considered physically inactive. The accumulation of prolonged sitting time is an exercise-independent risk factor for aging-related conditions such as cardiometabolic disease and cancer. Archival plasma samples from a randomized contro...

Full description

Saved in:
Bibliographic Details
Published in:Metabolites 2024-08, Vol.14 (9), p.478
Main Authors: Patterson, Jeffrey S, Rana, Brinda K, Gu, Haiwei, Sears, Dorothy D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Older adults sit during most hours of the day; more than 30% are considered physically inactive. The accumulation of prolonged sitting time is an exercise-independent risk factor for aging-related conditions such as cardiometabolic disease and cancer. Archival plasma samples from a randomized controlled, four-condition crossover study conducted in 10 postmenopausal women with overweight or obesity were analyzed. During 5-hour conditions completed on separate days, the trial tested three interruption modalities: two-minute stands each 20 min (STS), hourly ten-minute standing breaks (Stand), hourly two-minute walks (Walk), and a controlled sit. Fasting baseline and 5-hour end point (2 h postprandial) samples were used for targeted metabolomic profiling. Condition-associated metabolome changes were compared using paired -tests. STS eliminated the postprandial elevation of amino acid metabolites that was observed in the control. A norvaline derivative shown to have anti-hypertensive and -hyperglycemic effects was significantly increased during Stand and STS. Post-hoc testing identified 19 significantly different metabolites across the interventions. Tight metabolite clustering by condition was driven by amino acid, vasoactive, and sugar metabolites, as demonstrated by partial least squares-discriminant analyses. This exploratory study suggests that brief, low-intensity modalities of interrupting prolonged sitting can acutely elucidate beneficial cardiometabolic changes in postmenopausal women with cardiometabolic risk.
ISSN:2218-1989
2218-1989
DOI:10.3390/metabo14090478