Loading…

Smart polymers for the controlled delivery of drugs - a concise overview

Smart polymers have enormous potential in various applications. In particular, smart polymeric drug delivery systems have been explored as "intelligent" delivery systems able to release, at the appropriate time and site of action, entrapped drugs in response to specific physiological trigg...

Full description

Saved in:
Bibliographic Details
Published in:Acta pharmaceutica Sinica. B 2014-04, Vol.4 (2), p.120-127
Main Authors: Priya James, Honey, John, Rijo, Alex, Anju, Anoop, K R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Smart polymers have enormous potential in various applications. In particular, smart polymeric drug delivery systems have been explored as "intelligent" delivery systems able to release, at the appropriate time and site of action, entrapped drugs in response to specific physiological triggers. These polymers exhibit a non-linear response to a small stimulus leading to a macroscopic alteration in their structure/properties. The responses vary widely from swelling/contraction to disintegration. Synthesis of new polymers and crosslinkers with greater biocompatibility and better biodegradability would increase and enhance current applications. The most fascinating features of the smart polymers arise from their versatility and tunable sensitivity. The most significant weakness of all these external stimuli-sensitive polymers is slow response time. The versatility of polymer sources and their combinatorial synthesis make it possible to tune polymer sensitivity to a given stimulus within a narrow range. Development of smart polymer systems may lead to more accurate and programmable drug delivery. In this review, we discuss various mechanisms by which polymer systems are assembled in situ to form implanted devices for sustained release of therapeutic macromolecules, and we highlight various applications in the field of advanced drug delivery.
ISSN:2211-3835
2211-3843
DOI:10.1016/j.apsb.2014.02.005