Loading…

Remotely Estimating Beneficial Arthropod Populations: Implications of a Low-Cost Small Unmanned Aerial System

Studies show that agricultural land requires investment in the habitat management of non-cropped areas to support healthy beneficial arthropods and the ecosystem services they provide. In a previous small plot study, we manually counted blooms over the season, and found that plots providing greater...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2018-09, Vol.10 (9), p.1485
Main Authors: Xavier, Shereen, Coffin, Alisa, Olson, Dawn, Schmidt, Jason
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Studies show that agricultural land requires investment in the habitat management of non-cropped areas to support healthy beneficial arthropods and the ecosystem services they provide. In a previous small plot study, we manually counted blooms over the season, and found that plots providing greater numbers of flowers supported significantly higher pollinator populations over that of spontaneous weed plots. Here, we examined the potential of deploying an inexpensive small unmanned aerial vehicle (UAV) as a tool to remotely estimate floral resources and corresponding pollinator populations. Data were collected from previously established native wildflower plots in 19 locations on the University of Georgia experimental farms in South Georgia, USA. A UAV equipped with a lightweight digital camera was deployed to capture images of the flowers during the months of June and September 2017. Supervised image classification using a geographic information system (GIS) was carried out on the acquired images, and classified images were used to evaluate the floral area. The floral area obtained from the images positively correlated with the floral counts gathered from the quadrat samples. Furthermore, the floral area derived from imagery significantly predicted pollinator populations, with a positive correlation indicating that plots with greater area of blooming flowers contained higher numbers of pollinators.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs10091485