Loading…

Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground

The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Doubl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of robotics 2020, Vol.2020 (2020), p.1-10
Main Authors: Zhai, Shipeng, Song, Chunxiao, Li, Xiaoqiang, Wang, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13
cites cdi_FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13
container_end_page 10
container_issue 2020
container_start_page 1
container_title Journal of robotics
container_volume 2020
creator Zhai, Shipeng
Song, Chunxiao
Li, Xiaoqiang
Wang, Peng
description The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Double Deep Q Network (TDDQN) is proposed. The algorithm discards detected incomplete and over-detected paths by optimizing the tree structure, and combines the DDQN method with the tree structure method. Firstly, DDQN algorithm is used to select the best action in the current state after performing fewer actions, so as to obtain the candidate path that meets the conditions. And then, according to the obtained state, the above process is repeatedly executed to form multiple paths of the tree structure. Finally, the non-maximum suppression method is used to select the best path from the plurality of eligible candidate paths. ROS simulation and experiment verify that the wheeled robot can reach the target effectively on the slope ground with moving obstacles. The results show that compared with DDQN algorithm, TDDQN has the advantages of fast convergence and low loss function.
doi_str_mv 10.1155/2020/7167243
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3c83d056331f46f1a2652cb400faba81</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3c83d056331f46f1a2652cb400faba81</doaj_id><sourcerecordid>2352597001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhqOqSF0BN87IUo9tYGzHdnxsl48irQRaQBwtxxmTbLP21smq4t-TEESPncuMRs-8M6M3y04onFEqxDkDBueKSsUK_ilbUFmqXEuqP3_UAF-y477fwBhcM03VIvu9xh5tcg2JgVy8BLttHbmzQ0PuOhtCG55J9OSpQeywJutYxYH8tP1YTzzijqyxDT4mh1sMA1mNYvNUIEOD5L6LOyTXKe5DfZQdeNv1ePyeD7PHq8uH5a98dXt9s_yxyp1gasg1R644VsyxUpWuUFIKh4o65h0XwIUurZTjn77yEgRDXWOlFBSyBKSe8sPsZtato92YXWq3Nr2YaFvz1ojp2dg0tK5Dw13JaxCSc-oL6allUjBXFQDeVractL7OWrsU_-yxH8wm7lMYzzeMCya0Apio7zPlUuz7hP5jKwUzuWMmd8y7OyP-bcabNtT2b_s_-nSmcWTQ23801cAKxl8B06SV8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352597001</pqid></control><display><type>article</type><title>Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground</title><source>Access via ProQuest (Open Access)</source><source>Wiley_OA刊</source><creator>Zhai, Shipeng ; Song, Chunxiao ; Li, Xiaoqiang ; Wang, Peng</creator><contributor>Payandeh, Shahram ; Shahram Payandeh</contributor><creatorcontrib>Zhai, Shipeng ; Song, Chunxiao ; Li, Xiaoqiang ; Wang, Peng ; Payandeh, Shahram ; Shahram Payandeh</creatorcontrib><description>The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Double Deep Q Network (TDDQN) is proposed. The algorithm discards detected incomplete and over-detected paths by optimizing the tree structure, and combines the DDQN method with the tree structure method. Firstly, DDQN algorithm is used to select the best action in the current state after performing fewer actions, so as to obtain the candidate path that meets the conditions. And then, according to the obtained state, the above process is repeatedly executed to form multiple paths of the tree structure. Finally, the non-maximum suppression method is used to select the best path from the plurality of eligible candidate paths. ROS simulation and experiment verify that the wheeled robot can reach the target effectively on the slope ground with moving obstacles. The results show that compared with DDQN algorithm, TDDQN has the advantages of fast convergence and low loss function.</description><identifier>ISSN: 1687-9600</identifier><identifier>EISSN: 1687-9619</identifier><identifier>DOI: 10.1155/2020/7167243</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computer simulation ; Convergence ; Deep learning ; Machine learning ; Moving obstacles ; Path planning ; Robots</subject><ispartof>Journal of robotics, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Peng Wang et al.</rights><rights>Copyright © 2020 Peng Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13</citedby><cites>FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13</cites><orcidid>0000-0001-8646-8285 ; 0000-0003-0217-8577 ; 0000-0001-8573-5708 ; 0000-0002-7089-1633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2352597001/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2352597001?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Payandeh, Shahram</contributor><contributor>Shahram Payandeh</contributor><creatorcontrib>Zhai, Shipeng</creatorcontrib><creatorcontrib>Song, Chunxiao</creatorcontrib><creatorcontrib>Li, Xiaoqiang</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><title>Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground</title><title>Journal of robotics</title><description>The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Double Deep Q Network (TDDQN) is proposed. The algorithm discards detected incomplete and over-detected paths by optimizing the tree structure, and combines the DDQN method with the tree structure method. Firstly, DDQN algorithm is used to select the best action in the current state after performing fewer actions, so as to obtain the candidate path that meets the conditions. And then, according to the obtained state, the above process is repeatedly executed to form multiple paths of the tree structure. Finally, the non-maximum suppression method is used to select the best path from the plurality of eligible candidate paths. ROS simulation and experiment verify that the wheeled robot can reach the target effectively on the slope ground with moving obstacles. The results show that compared with DDQN algorithm, TDDQN has the advantages of fast convergence and low loss function.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Moving obstacles</subject><subject>Path planning</subject><subject>Robots</subject><issn>1687-9600</issn><issn>1687-9619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1P3DAQhqOqSF0BN87IUo9tYGzHdnxsl48irQRaQBwtxxmTbLP21smq4t-TEESPncuMRs-8M6M3y04onFEqxDkDBueKSsUK_ilbUFmqXEuqP3_UAF-y477fwBhcM03VIvu9xh5tcg2JgVy8BLttHbmzQ0PuOhtCG55J9OSpQeywJutYxYH8tP1YTzzijqyxDT4mh1sMA1mNYvNUIEOD5L6LOyTXKe5DfZQdeNv1ePyeD7PHq8uH5a98dXt9s_yxyp1gasg1R644VsyxUpWuUFIKh4o65h0XwIUurZTjn77yEgRDXWOlFBSyBKSe8sPsZtato92YXWq3Nr2YaFvz1ojp2dg0tK5Dw13JaxCSc-oL6allUjBXFQDeVractL7OWrsU_-yxH8wm7lMYzzeMCya0Apio7zPlUuz7hP5jKwUzuWMmd8y7OyP-bcabNtT2b_s_-nSmcWTQ23801cAKxl8B06SV8Q</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhai, Shipeng</creator><creator>Song, Chunxiao</creator><creator>Li, Xiaoqiang</creator><creator>Wang, Peng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8646-8285</orcidid><orcidid>https://orcid.org/0000-0003-0217-8577</orcidid><orcidid>https://orcid.org/0000-0001-8573-5708</orcidid><orcidid>https://orcid.org/0000-0002-7089-1633</orcidid></search><sort><creationdate>2020</creationdate><title>Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground</title><author>Zhai, Shipeng ; Song, Chunxiao ; Li, Xiaoqiang ; Wang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Moving obstacles</topic><topic>Path planning</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Shipeng</creatorcontrib><creatorcontrib>Song, Chunxiao</creatorcontrib><creatorcontrib>Li, Xiaoqiang</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Shipeng</au><au>Song, Chunxiao</au><au>Li, Xiaoqiang</au><au>Wang, Peng</au><au>Payandeh, Shahram</au><au>Shahram Payandeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground</atitle><jtitle>Journal of robotics</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-9600</issn><eissn>1687-9619</eissn><abstract>The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Double Deep Q Network (TDDQN) is proposed. The algorithm discards detected incomplete and over-detected paths by optimizing the tree structure, and combines the DDQN method with the tree structure method. Firstly, DDQN algorithm is used to select the best action in the current state after performing fewer actions, so as to obtain the candidate path that meets the conditions. And then, according to the obtained state, the above process is repeatedly executed to form multiple paths of the tree structure. Finally, the non-maximum suppression method is used to select the best path from the plurality of eligible candidate paths. ROS simulation and experiment verify that the wheeled robot can reach the target effectively on the slope ground with moving obstacles. The results show that compared with DDQN algorithm, TDDQN has the advantages of fast convergence and low loss function.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/7167243</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8646-8285</orcidid><orcidid>https://orcid.org/0000-0003-0217-8577</orcidid><orcidid>https://orcid.org/0000-0001-8573-5708</orcidid><orcidid>https://orcid.org/0000-0002-7089-1633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9600
ispartof Journal of robotics, 2020, Vol.2020 (2020), p.1-10
issn 1687-9600
1687-9619
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3c83d056331f46f1a2652cb400faba81
source Access via ProQuest (Open Access); Wiley_OA刊
subjects Algorithms
Computer simulation
Convergence
Deep learning
Machine learning
Moving obstacles
Path planning
Robots
title Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Dynamic%20Path%20Planning%20of%20Wheeled%20Robot%20Based%20on%20Deep%20Reinforcement%20Learning%20on%20the%20Slope%20Ground&rft.jtitle=Journal%20of%20robotics&rft.au=Zhai,%20Shipeng&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-9600&rft.eissn=1687-9619&rft_id=info:doi/10.1155/2020/7167243&rft_dat=%3Cproquest_doaj_%3E2352597001%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352597001&rft_id=info:pmid/&rfr_iscdi=true