Loading…
Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground
The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Doubl...
Saved in:
Published in: | Journal of robotics 2020, Vol.2020 (2020), p.1-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13 |
container_end_page | 10 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Journal of robotics |
container_volume | 2020 |
creator | Zhai, Shipeng Song, Chunxiao Li, Xiaoqiang Wang, Peng |
description | The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Double Deep Q Network (TDDQN) is proposed. The algorithm discards detected incomplete and over-detected paths by optimizing the tree structure, and combines the DDQN method with the tree structure method. Firstly, DDQN algorithm is used to select the best action in the current state after performing fewer actions, so as to obtain the candidate path that meets the conditions. And then, according to the obtained state, the above process is repeatedly executed to form multiple paths of the tree structure. Finally, the non-maximum suppression method is used to select the best path from the plurality of eligible candidate paths. ROS simulation and experiment verify that the wheeled robot can reach the target effectively on the slope ground with moving obstacles. The results show that compared with DDQN algorithm, TDDQN has the advantages of fast convergence and low loss function. |
doi_str_mv | 10.1155/2020/7167243 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3c83d056331f46f1a2652cb400faba81</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3c83d056331f46f1a2652cb400faba81</doaj_id><sourcerecordid>2352597001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhqOqSF0BN87IUo9tYGzHdnxsl48irQRaQBwtxxmTbLP21smq4t-TEESPncuMRs-8M6M3y04onFEqxDkDBueKSsUK_ilbUFmqXEuqP3_UAF-y477fwBhcM03VIvu9xh5tcg2JgVy8BLttHbmzQ0PuOhtCG55J9OSpQeywJutYxYH8tP1YTzzijqyxDT4mh1sMA1mNYvNUIEOD5L6LOyTXKe5DfZQdeNv1ePyeD7PHq8uH5a98dXt9s_yxyp1gasg1R644VsyxUpWuUFIKh4o65h0XwIUurZTjn77yEgRDXWOlFBSyBKSe8sPsZtato92YXWq3Nr2YaFvz1ojp2dg0tK5Dw13JaxCSc-oL6allUjBXFQDeVractL7OWrsU_-yxH8wm7lMYzzeMCya0Apio7zPlUuz7hP5jKwUzuWMmd8y7OyP-bcabNtT2b_s_-nSmcWTQ23801cAKxl8B06SV8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352597001</pqid></control><display><type>article</type><title>Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground</title><source>Access via ProQuest (Open Access)</source><source>Wiley_OA刊</source><creator>Zhai, Shipeng ; Song, Chunxiao ; Li, Xiaoqiang ; Wang, Peng</creator><contributor>Payandeh, Shahram ; Shahram Payandeh</contributor><creatorcontrib>Zhai, Shipeng ; Song, Chunxiao ; Li, Xiaoqiang ; Wang, Peng ; Payandeh, Shahram ; Shahram Payandeh</creatorcontrib><description>The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Double Deep Q Network (TDDQN) is proposed. The algorithm discards detected incomplete and over-detected paths by optimizing the tree structure, and combines the DDQN method with the tree structure method. Firstly, DDQN algorithm is used to select the best action in the current state after performing fewer actions, so as to obtain the candidate path that meets the conditions. And then, according to the obtained state, the above process is repeatedly executed to form multiple paths of the tree structure. Finally, the non-maximum suppression method is used to select the best path from the plurality of eligible candidate paths. ROS simulation and experiment verify that the wheeled robot can reach the target effectively on the slope ground with moving obstacles. The results show that compared with DDQN algorithm, TDDQN has the advantages of fast convergence and low loss function.</description><identifier>ISSN: 1687-9600</identifier><identifier>EISSN: 1687-9619</identifier><identifier>DOI: 10.1155/2020/7167243</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computer simulation ; Convergence ; Deep learning ; Machine learning ; Moving obstacles ; Path planning ; Robots</subject><ispartof>Journal of robotics, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Peng Wang et al.</rights><rights>Copyright © 2020 Peng Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13</citedby><cites>FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13</cites><orcidid>0000-0001-8646-8285 ; 0000-0003-0217-8577 ; 0000-0001-8573-5708 ; 0000-0002-7089-1633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2352597001/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2352597001?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Payandeh, Shahram</contributor><contributor>Shahram Payandeh</contributor><creatorcontrib>Zhai, Shipeng</creatorcontrib><creatorcontrib>Song, Chunxiao</creatorcontrib><creatorcontrib>Li, Xiaoqiang</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><title>Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground</title><title>Journal of robotics</title><description>The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Double Deep Q Network (TDDQN) is proposed. The algorithm discards detected incomplete and over-detected paths by optimizing the tree structure, and combines the DDQN method with the tree structure method. Firstly, DDQN algorithm is used to select the best action in the current state after performing fewer actions, so as to obtain the candidate path that meets the conditions. And then, according to the obtained state, the above process is repeatedly executed to form multiple paths of the tree structure. Finally, the non-maximum suppression method is used to select the best path from the plurality of eligible candidate paths. ROS simulation and experiment verify that the wheeled robot can reach the target effectively on the slope ground with moving obstacles. The results show that compared with DDQN algorithm, TDDQN has the advantages of fast convergence and low loss function.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Moving obstacles</subject><subject>Path planning</subject><subject>Robots</subject><issn>1687-9600</issn><issn>1687-9619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1P3DAQhqOqSF0BN87IUo9tYGzHdnxsl48irQRaQBwtxxmTbLP21smq4t-TEESPncuMRs-8M6M3y04onFEqxDkDBueKSsUK_ilbUFmqXEuqP3_UAF-y477fwBhcM03VIvu9xh5tcg2JgVy8BLttHbmzQ0PuOhtCG55J9OSpQeywJutYxYH8tP1YTzzijqyxDT4mh1sMA1mNYvNUIEOD5L6LOyTXKe5DfZQdeNv1ePyeD7PHq8uH5a98dXt9s_yxyp1gasg1R644VsyxUpWuUFIKh4o65h0XwIUurZTjn77yEgRDXWOlFBSyBKSe8sPsZtato92YXWq3Nr2YaFvz1ojp2dg0tK5Dw13JaxCSc-oL6allUjBXFQDeVractL7OWrsU_-yxH8wm7lMYzzeMCya0Apio7zPlUuz7hP5jKwUzuWMmd8y7OyP-bcabNtT2b_s_-nSmcWTQ23801cAKxl8B06SV8Q</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhai, Shipeng</creator><creator>Song, Chunxiao</creator><creator>Li, Xiaoqiang</creator><creator>Wang, Peng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8646-8285</orcidid><orcidid>https://orcid.org/0000-0003-0217-8577</orcidid><orcidid>https://orcid.org/0000-0001-8573-5708</orcidid><orcidid>https://orcid.org/0000-0002-7089-1633</orcidid></search><sort><creationdate>2020</creationdate><title>Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground</title><author>Zhai, Shipeng ; Song, Chunxiao ; Li, Xiaoqiang ; Wang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Moving obstacles</topic><topic>Path planning</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Shipeng</creatorcontrib><creatorcontrib>Song, Chunxiao</creatorcontrib><creatorcontrib>Li, Xiaoqiang</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Shipeng</au><au>Song, Chunxiao</au><au>Li, Xiaoqiang</au><au>Wang, Peng</au><au>Payandeh, Shahram</au><au>Shahram Payandeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground</atitle><jtitle>Journal of robotics</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-9600</issn><eissn>1687-9619</eissn><abstract>The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Double Deep Q Network (TDDQN) is proposed. The algorithm discards detected incomplete and over-detected paths by optimizing the tree structure, and combines the DDQN method with the tree structure method. Firstly, DDQN algorithm is used to select the best action in the current state after performing fewer actions, so as to obtain the candidate path that meets the conditions. And then, according to the obtained state, the above process is repeatedly executed to form multiple paths of the tree structure. Finally, the non-maximum suppression method is used to select the best path from the plurality of eligible candidate paths. ROS simulation and experiment verify that the wheeled robot can reach the target effectively on the slope ground with moving obstacles. The results show that compared with DDQN algorithm, TDDQN has the advantages of fast convergence and low loss function.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/7167243</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8646-8285</orcidid><orcidid>https://orcid.org/0000-0003-0217-8577</orcidid><orcidid>https://orcid.org/0000-0001-8573-5708</orcidid><orcidid>https://orcid.org/0000-0002-7089-1633</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9600 |
ispartof | Journal of robotics, 2020, Vol.2020 (2020), p.1-10 |
issn | 1687-9600 1687-9619 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3c83d056331f46f1a2652cb400faba81 |
source | Access via ProQuest (Open Access); Wiley_OA刊 |
subjects | Algorithms Computer simulation Convergence Deep learning Machine learning Moving obstacles Path planning Robots |
title | Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Dynamic%20Path%20Planning%20of%20Wheeled%20Robot%20Based%20on%20Deep%20Reinforcement%20Learning%20on%20the%20Slope%20Ground&rft.jtitle=Journal%20of%20robotics&rft.au=Zhai,%20Shipeng&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-9600&rft.eissn=1687-9619&rft_id=info:doi/10.1155/2020/7167243&rft_dat=%3Cproquest_doaj_%3E2352597001%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-93e373eb2c2878c47665ce71c2fc3503598a66672fbf6052e9deb7704680e1f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352597001&rft_id=info:pmid/&rfr_iscdi=true |