Loading…

The short-term harvesting effects of ambient particulate matter on mortality in Taiyuan elderly residents: A time-series analysis with a generalized additive distributed lag model

The evaluation on mortality displacement and distributed lag effects of airborne particulate matter (PM) on death risks is important to understand the positive association of short-term pollution from both ambient PM10 and PM2.5 with daily mortality. Herein, short-term influences of urban PM10 and P...

Full description

Saved in:
Bibliographic Details
Published in:Ecotoxicology and environmental safety 2021-01, Vol.207, p.111235, Article 111235
Main Authors: Zhou, Huan, Geng, Hong, Dong, Chuan, Bai, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The evaluation on mortality displacement and distributed lag effects of airborne particulate matter (PM) on death risks is important to understand the positive association of short-term pollution from both ambient PM10 and PM2.5 with daily mortality. Herein, short-term influences of urban PM10 and PM2.5 exposure on the mortality of respiratory diseases (RD) and cardiovascular diseases (CVD) were studied at Taiyuan, China, a typical inland city suffering from heavy ambient PM loading and having high morbidity of RD and CVD. Using a time-series analysis with generalized additive distributed lag model (DLM), the potential mortality displacement was determined and the single-day and cumulative lag-day effects of PM on mortality were estimated after the daily mass concentrations of urban PM2.5 and PM10 from January 2013 to October 2015 and the daily number of non-accidental death (NAD) and cause-specific mortality in the residents aged more than 65 years old were obtained. Results showed there were significant associations of PM2.5 and PM10 with daily mortality on the current day and within one week. And a statistically significant increase (P 
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2020.111235