Loading…
Plasma Electrolysis Spraying Al2O3 Coating onto Quartz Fiber Fabric for Enhanced Thermal Conductivity and Stability
This manuscript reported the synthesis of Al2O3 coating onto quartz fiber fabric by plasma electrolysis spray for enhanced thermal conductivity and stability. The nano- and micro-sized clusters were partially observed on the coating, while most coating was relatively smooth. It was suggested that th...
Saved in:
Published in: | Applied sciences 2020-01, Vol.10 (2), p.702 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This manuscript reported the synthesis of Al2O3 coating onto quartz fiber fabric by plasma electrolysis spray for enhanced thermal conductivity and stability. The nano- and micro-sized clusters were partially observed on the coating, while most coating was relatively smooth. It was suggested that the formation of a ceramic coating was followed as the nucleation-growth raw, that is, the formation of the coating clusters was dependent on the fast grow-up partially, implying the inhomogeneous energy distribution in the electrolysis plasma. The deposition of the Al2O3 coating increased the tensile strength from 19.2 to 58.1 MPa. The thermal conductivity of the coated quartz fiber was measured to be 1.17 W m−1 K−1, increased by ~45% compared to the bare fiber. The formation mechanism of the Al2O3 coating was preliminarily discussed. The thermally conductive quartz fiber with high thermal stability by plasma electrolysis spray will be widely used in flexible thermal shielding and insulation materials. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10020702 |