Loading…
FlowerPhenoNet: Automated Flower Detection from Multi-View Image Sequences Using Deep Neural Networks for Temporal Plant Phenotyping Analysis
A phenotype is the composite of an observable expression of a genome for traits in a given environment. The trajectories of phenotypes computed from an image sequence and timing of important events in a plant’s life cycle can be viewed as temporal phenotypes and indicative of the plant’s growth patt...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-12, Vol.14 (24), p.6252 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A phenotype is the composite of an observable expression of a genome for traits in a given environment. The trajectories of phenotypes computed from an image sequence and timing of important events in a plant’s life cycle can be viewed as temporal phenotypes and indicative of the plant’s growth pattern and vigor. In this paper, we introduce a novel method called FlowerPhenoNet, which uses deep neural networks for detecting flowers from multiview image sequences for high-throughput temporal plant phenotyping analysis. Following flower detection, a set of novel flower-based phenotypes are computed, e.g., the day of emergence of the first flower in a plant’s life cycle, the total number of flowers present in the plant at a given time, the highest number of flowers bloomed in the plant, growth trajectory of a flower, and the blooming trajectory of a plant. To develop a new algorithm and facilitate performance evaluation based on experimental analysis, a benchmark dataset is indispensable. Thus, we introduce a benchmark dataset called FlowerPheno, which comprises image sequences of three flowering plant species, e.g., sunflower, coleus, and canna, captured by a visible light camera in a high-throughput plant phenotyping platform from multiple view angles. The experimental analyses on the FlowerPheno dataset demonstrate the efficacy of the FlowerPhenoNet. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14246252 |