Loading…

Deciphering the Metabolic Pathway Difference Between Saccharopolyspora pogona and Saccharopolyspora spinosa by Comparative Proteomics and Metabonomics

Butenyl-spinosyn, a secondary metabolite produced by , exhibits strong insecticidal activity than spinosyn. However, the low synthesis capacity and unknown metabolic characteristics of butenyl-spinosyn in wild-type limit its broad application and metabolic engineering. Here, we showed that exhibited...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in microbiology 2020-03, Vol.11, p.396-396
Main Authors: Rang, Jie, He, Haocheng, Yuan, Shuangqin, Tang, Jianli, Liu, Zhudong, Xia, Ziyuan, Khan, Tahir Ali, Hu, Shengbiao, Yu, Ziquan, Hu, Yibo, Sun, Yunjun, Huang, Weitao, Ding, Xuezhi, Xia, Liqiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Butenyl-spinosyn, a secondary metabolite produced by , exhibits strong insecticidal activity than spinosyn. However, the low synthesis capacity and unknown metabolic characteristics of butenyl-spinosyn in wild-type limit its broad application and metabolic engineering. Here, we showed that exhibited increased glucose consumption ability and growth rate compared with , but the production of butenyl-spinosyn was much lower than that of spinosyn. To further elucidate the metabolic mechanism of these different phenotypes, we performed a comparative proteomic and metabolomic study on and to identify the change in the abundance levels of proteins and metabolites. We found that the abundance of most proteins and metabolites associated with glucose transport, fatty acid metabolism, tricarboxylic acid cycle, amino acid metabolism, energy metabolism, purine and pyrimidine metabolism, and target product biosynthesis in was higher than that in . However, the overall abundance of proteins involved in butenyl-spinosyn biosynthesis was much lower than that of the high-abundance protein chaperonin GroEL, such as the enzymes related to rhamnose synthesis. We speculated that these protein and metabolite abundance changes may be directly responsible for the above phenotypic changes in and , especially affecting butenyl-spinosyn biosynthesis. Further studies revealed that the over-expression of the rhamnose synthetic genes and methionine adenosyltransferase gene could effectively improve the production of butenyl-spinosyn by 2.69- and 3.03-fold, respectively, confirming the reliability of this conjecture. This work presents the first comparative proteomics and metabolomics study of and , providing new insights into the novel links of phenotypic change and metabolic difference between two strains. The result will be valuable in designing strategies to promote the biosynthesis of butenyl-spinosyn by metabolic engineering.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2020.00396