Loading…

Prevention of elastase-induced emphysema in placenta growth factor knock-out mice

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF pr...

Full description

Saved in:
Bibliographic Details
Published in:Respiratory research 2009-11, Vol.10 (1), p.115-115, Article 115
Main Authors: Cheng, Shih Lung, Wang, Hao Chien, Yu, Chong Jen, Tsao, Po Nien, Carmeliet, Peter, Cheng, Shi Jung, Yang, Pan Chyr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema. Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-alpha), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immunohistochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues. After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-alpha and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs. In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.
ISSN:1465-993X
1465-9921
1465-993X
1465-9921
DOI:10.1186/1465-9921-10-115