Loading…

A dataset for calculating Young's modulus in deep spherical indentations

Atomic Force Microscopy (AFM) is a powerful tool for determining the mechanical properties of soft materials at the nanoscale. When using spherical indenters, the data is usually fitted to the classic Hertzian equation which is valid for parabolic indenters, or spherical indenters for small indentat...

Full description

Saved in:
Bibliographic Details
Published in:Results in surfaces and interfaces 2023-10, Vol.13, p.100150, Article 100150
Main Authors: Kontomaris, Stylianos Vasileios, Chliveros, Georgios, Malamou, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c367t-f08e40e08bf5ce2f7bd46f9a021243566fb592a2bc9f683fc27648edd28c134c3
container_end_page
container_issue
container_start_page 100150
container_title Results in surfaces and interfaces
container_volume 13
creator Kontomaris, Stylianos Vasileios
Chliveros, Georgios
Malamou, Anna
description Atomic Force Microscopy (AFM) is a powerful tool for determining the mechanical properties of soft materials at the nanoscale. When using spherical indenters, the data is usually fitted to the classic Hertzian equation which is valid for parabolic indenters, or spherical indenters for small indentation depths compared to the tip radius (i.e. h/R«1). However, for bigger indentation depths, more complex equations should be used for data fitting. In this paper, a straightforward energy-based approach is proposed to determine the Young's modulus of soft samples without the need for a fitting procedure. By calculating the integral of the function that relates the force to the indentation depth for deep spherical indentations, an equation was derived that relates the work done by the indenter (W) to the h/R ratio. The Young's modulus (E) can be easily determined by calculating the work done by the indenter (which is equal to the area under the force-indentation data) and using a function that depends on the h/R ratio (i.e., X = f (h/R)). In this dataset article, the function X = f (h/R) and a table including the X-values corresponding to different h/R values in the domain 0 ≤ h/R ≤ 5 are presented. An example demonstrating indentation experiments on an agarose gel is also included. This proposed approach represents the simplest way to generate Young's modulus maps, as it only requires calculating the area under the force-indentation data and using the X-values presented in this dataset article.
doi_str_mv 10.1016/j.rsurfi.2023.100150
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3cfd44a0415341379315b7ff4f1b7011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666845923000570</els_id><doaj_id>oai_doaj_org_article_3cfd44a0415341379315b7ff4f1b7011</doaj_id><sourcerecordid>S2666845923000570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f08e40e08bf5ce2f7bd46f9a021243566fb592a2bc9f683fc27648edd28c134c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLTfwENunlrzb7O7F6EUtYWCFz14CtlkUrNsNyXZFfz2pq6IJ08zPN77MfMQuqFkSQmVd-0ypjE6v2SE8SwRWpAzNGNSykUlivr8z36J5im1hBBWUcqkmKHNCls96AQDdiFiozszdnrw_R6_hbHf3yZ8CHbsxoR9jy3AEafjO0SfnVmx0A_ZHfp0jS6c7hLMf-YVen18eFlvFrvnp-16tVsYLsth4UgFggCpGlcYYK5srJCu1oRRJnghpWuKmmnWmNrJijvDSikqsJZVhnJh-BXaTlwbdKuO0R90_FRBe_UthLhXOg7edKC4cVYITQQtuKC8rDktmtI54WhTEkozS0wsE0NKEdwvjxJ1Kle1aipXncpVU7k5dj_FIP_54SGqZDz0BqyPYIZ8iP8f8AUpIIPy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A dataset for calculating Young's modulus in deep spherical indentations</title><source>Elsevier ScienceDirect Journals</source><creator>Kontomaris, Stylianos Vasileios ; Chliveros, Georgios ; Malamou, Anna</creator><creatorcontrib>Kontomaris, Stylianos Vasileios ; Chliveros, Georgios ; Malamou, Anna</creatorcontrib><description>Atomic Force Microscopy (AFM) is a powerful tool for determining the mechanical properties of soft materials at the nanoscale. When using spherical indenters, the data is usually fitted to the classic Hertzian equation which is valid for parabolic indenters, or spherical indenters for small indentation depths compared to the tip radius (i.e. h/R«1). However, for bigger indentation depths, more complex equations should be used for data fitting. In this paper, a straightforward energy-based approach is proposed to determine the Young's modulus of soft samples without the need for a fitting procedure. By calculating the integral of the function that relates the force to the indentation depth for deep spherical indentations, an equation was derived that relates the work done by the indenter (W) to the h/R ratio. The Young's modulus (E) can be easily determined by calculating the work done by the indenter (which is equal to the area under the force-indentation data) and using a function that depends on the h/R ratio (i.e., X = f (h/R)). In this dataset article, the function X = f (h/R) and a table including the X-values corresponding to different h/R values in the domain 0 ≤ h/R ≤ 5 are presented. An example demonstrating indentation experiments on an agarose gel is also included. This proposed approach represents the simplest way to generate Young's modulus maps, as it only requires calculating the area under the force-indentation data and using the X-values presented in this dataset article.</description><identifier>ISSN: 2666-8459</identifier><identifier>EISSN: 2666-8459</identifier><identifier>DOI: 10.1016/j.rsurfi.2023.100150</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>AFM ; Biological materials ; Microscopy ; Nanoscale ; Surface characterization</subject><ispartof>Results in surfaces and interfaces, 2023-10, Vol.13, p.100150, Article 100150</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-f08e40e08bf5ce2f7bd46f9a021243566fb592a2bc9f683fc27648edd28c134c3</cites><orcidid>0000-0003-4843-1208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666845923000570$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Kontomaris, Stylianos Vasileios</creatorcontrib><creatorcontrib>Chliveros, Georgios</creatorcontrib><creatorcontrib>Malamou, Anna</creatorcontrib><title>A dataset for calculating Young's modulus in deep spherical indentations</title><title>Results in surfaces and interfaces</title><description>Atomic Force Microscopy (AFM) is a powerful tool for determining the mechanical properties of soft materials at the nanoscale. When using spherical indenters, the data is usually fitted to the classic Hertzian equation which is valid for parabolic indenters, or spherical indenters for small indentation depths compared to the tip radius (i.e. h/R«1). However, for bigger indentation depths, more complex equations should be used for data fitting. In this paper, a straightforward energy-based approach is proposed to determine the Young's modulus of soft samples without the need for a fitting procedure. By calculating the integral of the function that relates the force to the indentation depth for deep spherical indentations, an equation was derived that relates the work done by the indenter (W) to the h/R ratio. The Young's modulus (E) can be easily determined by calculating the work done by the indenter (which is equal to the area under the force-indentation data) and using a function that depends on the h/R ratio (i.e., X = f (h/R)). In this dataset article, the function X = f (h/R) and a table including the X-values corresponding to different h/R values in the domain 0 ≤ h/R ≤ 5 are presented. An example demonstrating indentation experiments on an agarose gel is also included. This proposed approach represents the simplest way to generate Young's modulus maps, as it only requires calculating the area under the force-indentation data and using the X-values presented in this dataset article.</description><subject>AFM</subject><subject>Biological materials</subject><subject>Microscopy</subject><subject>Nanoscale</subject><subject>Surface characterization</subject><issn>2666-8459</issn><issn>2666-8459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE9LAzEQxYMoWLTfwENunlrzb7O7F6EUtYWCFz14CtlkUrNsNyXZFfz2pq6IJ08zPN77MfMQuqFkSQmVd-0ypjE6v2SE8SwRWpAzNGNSykUlivr8z36J5im1hBBWUcqkmKHNCls96AQDdiFiozszdnrw_R6_hbHf3yZ8CHbsxoR9jy3AEafjO0SfnVmx0A_ZHfp0jS6c7hLMf-YVen18eFlvFrvnp-16tVsYLsth4UgFggCpGlcYYK5srJCu1oRRJnghpWuKmmnWmNrJijvDSikqsJZVhnJh-BXaTlwbdKuO0R90_FRBe_UthLhXOg7edKC4cVYITQQtuKC8rDktmtI54WhTEkozS0wsE0NKEdwvjxJ1Kle1aipXncpVU7k5dj_FIP_54SGqZDz0BqyPYIZ8iP8f8AUpIIPy</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kontomaris, Stylianos Vasileios</creator><creator>Chliveros, Georgios</creator><creator>Malamou, Anna</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4843-1208</orcidid></search><sort><creationdate>20231001</creationdate><title>A dataset for calculating Young's modulus in deep spherical indentations</title><author>Kontomaris, Stylianos Vasileios ; Chliveros, Georgios ; Malamou, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f08e40e08bf5ce2f7bd46f9a021243566fb592a2bc9f683fc27648edd28c134c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AFM</topic><topic>Biological materials</topic><topic>Microscopy</topic><topic>Nanoscale</topic><topic>Surface characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kontomaris, Stylianos Vasileios</creatorcontrib><creatorcontrib>Chliveros, Georgios</creatorcontrib><creatorcontrib>Malamou, Anna</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Results in surfaces and interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kontomaris, Stylianos Vasileios</au><au>Chliveros, Georgios</au><au>Malamou, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dataset for calculating Young's modulus in deep spherical indentations</atitle><jtitle>Results in surfaces and interfaces</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>13</volume><spage>100150</spage><pages>100150-</pages><artnum>100150</artnum><issn>2666-8459</issn><eissn>2666-8459</eissn><abstract>Atomic Force Microscopy (AFM) is a powerful tool for determining the mechanical properties of soft materials at the nanoscale. When using spherical indenters, the data is usually fitted to the classic Hertzian equation which is valid for parabolic indenters, or spherical indenters for small indentation depths compared to the tip radius (i.e. h/R«1). However, for bigger indentation depths, more complex equations should be used for data fitting. In this paper, a straightforward energy-based approach is proposed to determine the Young's modulus of soft samples without the need for a fitting procedure. By calculating the integral of the function that relates the force to the indentation depth for deep spherical indentations, an equation was derived that relates the work done by the indenter (W) to the h/R ratio. The Young's modulus (E) can be easily determined by calculating the work done by the indenter (which is equal to the area under the force-indentation data) and using a function that depends on the h/R ratio (i.e., X = f (h/R)). In this dataset article, the function X = f (h/R) and a table including the X-values corresponding to different h/R values in the domain 0 ≤ h/R ≤ 5 are presented. An example demonstrating indentation experiments on an agarose gel is also included. This proposed approach represents the simplest way to generate Young's modulus maps, as it only requires calculating the area under the force-indentation data and using the X-values presented in this dataset article.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.rsurfi.2023.100150</doi><orcidid>https://orcid.org/0000-0003-4843-1208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-8459
ispartof Results in surfaces and interfaces, 2023-10, Vol.13, p.100150, Article 100150
issn 2666-8459
2666-8459
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3cfd44a0415341379315b7ff4f1b7011
source Elsevier ScienceDirect Journals
subjects AFM
Biological materials
Microscopy
Nanoscale
Surface characterization
title A dataset for calculating Young's modulus in deep spherical indentations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dataset%20for%20calculating%20Young's%20modulus%20in%20deep%20spherical%20indentations&rft.jtitle=Results%20in%20surfaces%20and%20interfaces&rft.au=Kontomaris,%20Stylianos%20Vasileios&rft.date=2023-10-01&rft.volume=13&rft.spage=100150&rft.pages=100150-&rft.artnum=100150&rft.issn=2666-8459&rft.eissn=2666-8459&rft_id=info:doi/10.1016/j.rsurfi.2023.100150&rft_dat=%3Celsevier_doaj_%3ES2666845923000570%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-f08e40e08bf5ce2f7bd46f9a021243566fb592a2bc9f683fc27648edd28c134c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true