Loading…
A dataset for calculating Young's modulus in deep spherical indentations
Atomic Force Microscopy (AFM) is a powerful tool for determining the mechanical properties of soft materials at the nanoscale. When using spherical indenters, the data is usually fitted to the classic Hertzian equation which is valid for parabolic indenters, or spherical indenters for small indentat...
Saved in:
Published in: | Results in surfaces and interfaces 2023-10, Vol.13, p.100150, Article 100150 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-f08e40e08bf5ce2f7bd46f9a021243566fb592a2bc9f683fc27648edd28c134c3 |
container_end_page | |
container_issue | |
container_start_page | 100150 |
container_title | Results in surfaces and interfaces |
container_volume | 13 |
creator | Kontomaris, Stylianos Vasileios Chliveros, Georgios Malamou, Anna |
description | Atomic Force Microscopy (AFM) is a powerful tool for determining the mechanical properties of soft materials at the nanoscale. When using spherical indenters, the data is usually fitted to the classic Hertzian equation which is valid for parabolic indenters, or spherical indenters for small indentation depths compared to the tip radius (i.e. h/R«1). However, for bigger indentation depths, more complex equations should be used for data fitting. In this paper, a straightforward energy-based approach is proposed to determine the Young's modulus of soft samples without the need for a fitting procedure. By calculating the integral of the function that relates the force to the indentation depth for deep spherical indentations, an equation was derived that relates the work done by the indenter (W) to the h/R ratio. The Young's modulus (E) can be easily determined by calculating the work done by the indenter (which is equal to the area under the force-indentation data) and using a function that depends on the h/R ratio (i.e., X = f (h/R)). In this dataset article, the function X = f (h/R) and a table including the X-values corresponding to different h/R values in the domain 0 ≤ h/R ≤ 5 are presented. An example demonstrating indentation experiments on an agarose gel is also included. This proposed approach represents the simplest way to generate Young's modulus maps, as it only requires calculating the area under the force-indentation data and using the X-values presented in this dataset article. |
doi_str_mv | 10.1016/j.rsurfi.2023.100150 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3cfd44a0415341379315b7ff4f1b7011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666845923000570</els_id><doaj_id>oai_doaj_org_article_3cfd44a0415341379315b7ff4f1b7011</doaj_id><sourcerecordid>S2666845923000570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f08e40e08bf5ce2f7bd46f9a021243566fb592a2bc9f683fc27648edd28c134c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLTfwENunlrzb7O7F6EUtYWCFz14CtlkUrNsNyXZFfz2pq6IJ08zPN77MfMQuqFkSQmVd-0ypjE6v2SE8SwRWpAzNGNSykUlivr8z36J5im1hBBWUcqkmKHNCls96AQDdiFiozszdnrw_R6_hbHf3yZ8CHbsxoR9jy3AEafjO0SfnVmx0A_ZHfp0jS6c7hLMf-YVen18eFlvFrvnp-16tVsYLsth4UgFggCpGlcYYK5srJCu1oRRJnghpWuKmmnWmNrJijvDSikqsJZVhnJh-BXaTlwbdKuO0R90_FRBe_UthLhXOg7edKC4cVYITQQtuKC8rDktmtI54WhTEkozS0wsE0NKEdwvjxJ1Kle1aipXncpVU7k5dj_FIP_54SGqZDz0BqyPYIZ8iP8f8AUpIIPy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A dataset for calculating Young's modulus in deep spherical indentations</title><source>Elsevier ScienceDirect Journals</source><creator>Kontomaris, Stylianos Vasileios ; Chliveros, Georgios ; Malamou, Anna</creator><creatorcontrib>Kontomaris, Stylianos Vasileios ; Chliveros, Georgios ; Malamou, Anna</creatorcontrib><description>Atomic Force Microscopy (AFM) is a powerful tool for determining the mechanical properties of soft materials at the nanoscale. When using spherical indenters, the data is usually fitted to the classic Hertzian equation which is valid for parabolic indenters, or spherical indenters for small indentation depths compared to the tip radius (i.e. h/R«1). However, for bigger indentation depths, more complex equations should be used for data fitting. In this paper, a straightforward energy-based approach is proposed to determine the Young's modulus of soft samples without the need for a fitting procedure. By calculating the integral of the function that relates the force to the indentation depth for deep spherical indentations, an equation was derived that relates the work done by the indenter (W) to the h/R ratio. The Young's modulus (E) can be easily determined by calculating the work done by the indenter (which is equal to the area under the force-indentation data) and using a function that depends on the h/R ratio (i.e., X = f (h/R)). In this dataset article, the function X = f (h/R) and a table including the X-values corresponding to different h/R values in the domain 0 ≤ h/R ≤ 5 are presented. An example demonstrating indentation experiments on an agarose gel is also included. This proposed approach represents the simplest way to generate Young's modulus maps, as it only requires calculating the area under the force-indentation data and using the X-values presented in this dataset article.</description><identifier>ISSN: 2666-8459</identifier><identifier>EISSN: 2666-8459</identifier><identifier>DOI: 10.1016/j.rsurfi.2023.100150</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>AFM ; Biological materials ; Microscopy ; Nanoscale ; Surface characterization</subject><ispartof>Results in surfaces and interfaces, 2023-10, Vol.13, p.100150, Article 100150</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-f08e40e08bf5ce2f7bd46f9a021243566fb592a2bc9f683fc27648edd28c134c3</cites><orcidid>0000-0003-4843-1208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666845923000570$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Kontomaris, Stylianos Vasileios</creatorcontrib><creatorcontrib>Chliveros, Georgios</creatorcontrib><creatorcontrib>Malamou, Anna</creatorcontrib><title>A dataset for calculating Young's modulus in deep spherical indentations</title><title>Results in surfaces and interfaces</title><description>Atomic Force Microscopy (AFM) is a powerful tool for determining the mechanical properties of soft materials at the nanoscale. When using spherical indenters, the data is usually fitted to the classic Hertzian equation which is valid for parabolic indenters, or spherical indenters for small indentation depths compared to the tip radius (i.e. h/R«1). However, for bigger indentation depths, more complex equations should be used for data fitting. In this paper, a straightforward energy-based approach is proposed to determine the Young's modulus of soft samples without the need for a fitting procedure. By calculating the integral of the function that relates the force to the indentation depth for deep spherical indentations, an equation was derived that relates the work done by the indenter (W) to the h/R ratio. The Young's modulus (E) can be easily determined by calculating the work done by the indenter (which is equal to the area under the force-indentation data) and using a function that depends on the h/R ratio (i.e., X = f (h/R)). In this dataset article, the function X = f (h/R) and a table including the X-values corresponding to different h/R values in the domain 0 ≤ h/R ≤ 5 are presented. An example demonstrating indentation experiments on an agarose gel is also included. This proposed approach represents the simplest way to generate Young's modulus maps, as it only requires calculating the area under the force-indentation data and using the X-values presented in this dataset article.</description><subject>AFM</subject><subject>Biological materials</subject><subject>Microscopy</subject><subject>Nanoscale</subject><subject>Surface characterization</subject><issn>2666-8459</issn><issn>2666-8459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE9LAzEQxYMoWLTfwENunlrzb7O7F6EUtYWCFz14CtlkUrNsNyXZFfz2pq6IJ08zPN77MfMQuqFkSQmVd-0ypjE6v2SE8SwRWpAzNGNSykUlivr8z36J5im1hBBWUcqkmKHNCls96AQDdiFiozszdnrw_R6_hbHf3yZ8CHbsxoR9jy3AEafjO0SfnVmx0A_ZHfp0jS6c7hLMf-YVen18eFlvFrvnp-16tVsYLsth4UgFggCpGlcYYK5srJCu1oRRJnghpWuKmmnWmNrJijvDSikqsJZVhnJh-BXaTlwbdKuO0R90_FRBe_UthLhXOg7edKC4cVYITQQtuKC8rDktmtI54WhTEkozS0wsE0NKEdwvjxJ1Kle1aipXncpVU7k5dj_FIP_54SGqZDz0BqyPYIZ8iP8f8AUpIIPy</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kontomaris, Stylianos Vasileios</creator><creator>Chliveros, Georgios</creator><creator>Malamou, Anna</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4843-1208</orcidid></search><sort><creationdate>20231001</creationdate><title>A dataset for calculating Young's modulus in deep spherical indentations</title><author>Kontomaris, Stylianos Vasileios ; Chliveros, Georgios ; Malamou, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f08e40e08bf5ce2f7bd46f9a021243566fb592a2bc9f683fc27648edd28c134c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AFM</topic><topic>Biological materials</topic><topic>Microscopy</topic><topic>Nanoscale</topic><topic>Surface characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kontomaris, Stylianos Vasileios</creatorcontrib><creatorcontrib>Chliveros, Georgios</creatorcontrib><creatorcontrib>Malamou, Anna</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Results in surfaces and interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kontomaris, Stylianos Vasileios</au><au>Chliveros, Georgios</au><au>Malamou, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dataset for calculating Young's modulus in deep spherical indentations</atitle><jtitle>Results in surfaces and interfaces</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>13</volume><spage>100150</spage><pages>100150-</pages><artnum>100150</artnum><issn>2666-8459</issn><eissn>2666-8459</eissn><abstract>Atomic Force Microscopy (AFM) is a powerful tool for determining the mechanical properties of soft materials at the nanoscale. When using spherical indenters, the data is usually fitted to the classic Hertzian equation which is valid for parabolic indenters, or spherical indenters for small indentation depths compared to the tip radius (i.e. h/R«1). However, for bigger indentation depths, more complex equations should be used for data fitting. In this paper, a straightforward energy-based approach is proposed to determine the Young's modulus of soft samples without the need for a fitting procedure. By calculating the integral of the function that relates the force to the indentation depth for deep spherical indentations, an equation was derived that relates the work done by the indenter (W) to the h/R ratio. The Young's modulus (E) can be easily determined by calculating the work done by the indenter (which is equal to the area under the force-indentation data) and using a function that depends on the h/R ratio (i.e., X = f (h/R)). In this dataset article, the function X = f (h/R) and a table including the X-values corresponding to different h/R values in the domain 0 ≤ h/R ≤ 5 are presented. An example demonstrating indentation experiments on an agarose gel is also included. This proposed approach represents the simplest way to generate Young's modulus maps, as it only requires calculating the area under the force-indentation data and using the X-values presented in this dataset article.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.rsurfi.2023.100150</doi><orcidid>https://orcid.org/0000-0003-4843-1208</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-8459 |
ispartof | Results in surfaces and interfaces, 2023-10, Vol.13, p.100150, Article 100150 |
issn | 2666-8459 2666-8459 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3cfd44a0415341379315b7ff4f1b7011 |
source | Elsevier ScienceDirect Journals |
subjects | AFM Biological materials Microscopy Nanoscale Surface characterization |
title | A dataset for calculating Young's modulus in deep spherical indentations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dataset%20for%20calculating%20Young's%20modulus%20in%20deep%20spherical%20indentations&rft.jtitle=Results%20in%20surfaces%20and%20interfaces&rft.au=Kontomaris,%20Stylianos%20Vasileios&rft.date=2023-10-01&rft.volume=13&rft.spage=100150&rft.pages=100150-&rft.artnum=100150&rft.issn=2666-8459&rft.eissn=2666-8459&rft_id=info:doi/10.1016/j.rsurfi.2023.100150&rft_dat=%3Celsevier_doaj_%3ES2666845923000570%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-f08e40e08bf5ce2f7bd46f9a021243566fb592a2bc9f683fc27648edd28c134c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |