Loading…
Self-healable printed magnetic field sensors using alternating magnetic fields
We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders...
Saved in:
Published in: | Nature communications 2022-11, Vol.13 (1), p.6587-6587, Article 6587 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-e52f5c98fac16374d5f796f615f9a9356cf5bb272f692559b2642b60689ea3a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-e52f5c98fac16374d5f796f615f9a9356cf5bb272f692559b2642b60689ea3a33 |
container_end_page | 6587 |
container_issue | 1 |
container_start_page | 6587 |
container_title | Nature communications |
container_volume | 13 |
creator | Xu, Rui Cañón Bermúdez, Gilbert Santiago Pylypovskyi, Oleksandr V. Volkov, Oleksii M. Oliveros Mata, Eduardo Sergio Zabila, Yevhen Illing, Rico Makushko, Pavlo Milkin, Pavel Ionov, Leonid Fassbender, Jürgen Makarov, Denys |
description | We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders of magnitude relative to previous reports. These sensors display low noise, high resolution, and are readily processable using various printing techniques that can be applied to different substrates. The AMF-mediated self-healing has six characteristics: 100% performance recovery; repeatable healing over multiple cycles; room-temperature operation; healing in seconds; no need for manual reassembly; humidity insensitivity. It is found that the above advantages arise from the AMF-induced attraction of magnetic microparticles and the determinative oscillation that work synergistically to improve the quantity and quality of filler contacts. By virtue of these advantages, the AMF-mediated sensors are used in safety application, medical therapy, and human-machine interfaces for augmented reality.
Flexible magnetic sensors with high sensitivity have a wide variety of medical and industrial uses, however, making such sensors robust and flexible at the same time can be challenging. Here, the authors demonstrate a high sensitivity flexible magnetic sensor that exhibits self-healing under an applied alternative magnetic field, with complete performance recovery. |
doi_str_mv | 10.1038/s41467-022-34235-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3d0dd2f8e0a745daa8be2a4878dd6d61</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3d0dd2f8e0a745daa8be2a4878dd6d61</doaj_id><sourcerecordid>2732534648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e52f5c98fac16374d5f796f615f9a9356cf5bb272f692559b2642b60689ea3a33</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEolXpH-CAInHhkmJ7bMe-IKEKaKUKDsDZmsTjNCtvUuwsEv8e76aULgd88cj-_OZ5XlW95OyCMzBvs-RStw0TogEpQDXwpDoVTPKGtwKePqpPqvOcN6wssNxI-bw6AQ3CMgGn1eevFENzSxixi1TfpXFayNdbHCZaxr4OI0VfZ5rynHK9y-M01BgXShMu-_oYzC-qZwFjpvP7_az6_vHDt8ur5ubLp-vL9zdNryRbGlIiqN6agD3X0EqvQmt10FwFixaU7oPqOtGKoK1QynZCS9Fppo0lBAQ4q65XXT_jxhXXW0y_3IyjOxzMaXCYiq1IDjzzXgRDDFupPKLpSKA0rfFee82L1rtV627Xbcn3NC0J45Ho8c003rph_umsBl48FYE39wJp_rGjvLjtmHuKESead9mJFoQCqaUp6Ot_0M28K7OMB6rMQhnTFkqsVJ_mnBOFBzOcuX36bk3flfTdIX23H8mrx994ePIn6wLACuR9ygOlv73_I_sbmcS6ow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731635887</pqid></control><display><type>article</type><title>Self-healable printed magnetic field sensors using alternating magnetic fields</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Xu, Rui ; Cañón Bermúdez, Gilbert Santiago ; Pylypovskyi, Oleksandr V. ; Volkov, Oleksii M. ; Oliveros Mata, Eduardo Sergio ; Zabila, Yevhen ; Illing, Rico ; Makushko, Pavlo ; Milkin, Pavel ; Ionov, Leonid ; Fassbender, Jürgen ; Makarov, Denys</creator><creatorcontrib>Xu, Rui ; Cañón Bermúdez, Gilbert Santiago ; Pylypovskyi, Oleksandr V. ; Volkov, Oleksii M. ; Oliveros Mata, Eduardo Sergio ; Zabila, Yevhen ; Illing, Rico ; Makushko, Pavlo ; Milkin, Pavel ; Ionov, Leonid ; Fassbender, Jürgen ; Makarov, Denys</creatorcontrib><description>We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders of magnitude relative to previous reports. These sensors display low noise, high resolution, and are readily processable using various printing techniques that can be applied to different substrates. The AMF-mediated self-healing has six characteristics: 100% performance recovery; repeatable healing over multiple cycles; room-temperature operation; healing in seconds; no need for manual reassembly; humidity insensitivity. It is found that the above advantages arise from the AMF-induced attraction of magnetic microparticles and the determinative oscillation that work synergistically to improve the quantity and quality of filler contacts. By virtue of these advantages, the AMF-mediated sensors are used in safety application, medical therapy, and human-machine interfaces for augmented reality.
Flexible magnetic sensors with high sensitivity have a wide variety of medical and industrial uses, however, making such sensors robust and flexible at the same time can be challenging. Here, the authors demonstrate a high sensitivity flexible magnetic sensor that exhibits self-healing under an applied alternative magnetic field, with complete performance recovery.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-34235-3</identifier><identifier>PMID: 36329023</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/135 ; 639/166/987 ; 639/166/988 ; 639/301/1005/1009 ; Augmented reality ; Figure of merit ; Fillers ; Humanities and Social Sciences ; Humans ; Industrial applications ; Interfaces ; Low noise ; Magnetic Fields ; Magnetics ; Magnetism ; Magnetoresistivity ; Man-machine interfaces ; Microparticles ; multidisciplinary ; Percolation ; Recovery ; Room temperature ; Science ; Science (multidisciplinary) ; Sensitivity enhancement ; Sensors ; Substrates</subject><ispartof>Nature communications, 2022-11, Vol.13 (1), p.6587-6587, Article 6587</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e52f5c98fac16374d5f796f615f9a9356cf5bb272f692559b2642b60689ea3a33</citedby><cites>FETCH-LOGICAL-c540t-e52f5c98fac16374d5f796f615f9a9356cf5bb272f692559b2642b60689ea3a33</cites><orcidid>0000-0002-5947-9760 ; 0000-0003-3893-9630 ; 0000-0001-7246-4099 ; 0000-0002-7277-7287 ; 0000-0002-1660-4437 ; 0000-0002-7177-4308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2731635887/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2731635887?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36329023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Cañón Bermúdez, Gilbert Santiago</creatorcontrib><creatorcontrib>Pylypovskyi, Oleksandr V.</creatorcontrib><creatorcontrib>Volkov, Oleksii M.</creatorcontrib><creatorcontrib>Oliveros Mata, Eduardo Sergio</creatorcontrib><creatorcontrib>Zabila, Yevhen</creatorcontrib><creatorcontrib>Illing, Rico</creatorcontrib><creatorcontrib>Makushko, Pavlo</creatorcontrib><creatorcontrib>Milkin, Pavel</creatorcontrib><creatorcontrib>Ionov, Leonid</creatorcontrib><creatorcontrib>Fassbender, Jürgen</creatorcontrib><creatorcontrib>Makarov, Denys</creatorcontrib><title>Self-healable printed magnetic field sensors using alternating magnetic fields</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders of magnitude relative to previous reports. These sensors display low noise, high resolution, and are readily processable using various printing techniques that can be applied to different substrates. The AMF-mediated self-healing has six characteristics: 100% performance recovery; repeatable healing over multiple cycles; room-temperature operation; healing in seconds; no need for manual reassembly; humidity insensitivity. It is found that the above advantages arise from the AMF-induced attraction of magnetic microparticles and the determinative oscillation that work synergistically to improve the quantity and quality of filler contacts. By virtue of these advantages, the AMF-mediated sensors are used in safety application, medical therapy, and human-machine interfaces for augmented reality.
Flexible magnetic sensors with high sensitivity have a wide variety of medical and industrial uses, however, making such sensors robust and flexible at the same time can be challenging. Here, the authors demonstrate a high sensitivity flexible magnetic sensor that exhibits self-healing under an applied alternative magnetic field, with complete performance recovery.</description><subject>147/135</subject><subject>639/166/987</subject><subject>639/166/988</subject><subject>639/301/1005/1009</subject><subject>Augmented reality</subject><subject>Figure of merit</subject><subject>Fillers</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Industrial applications</subject><subject>Interfaces</subject><subject>Low noise</subject><subject>Magnetic Fields</subject><subject>Magnetics</subject><subject>Magnetism</subject><subject>Magnetoresistivity</subject><subject>Man-machine interfaces</subject><subject>Microparticles</subject><subject>multidisciplinary</subject><subject>Percolation</subject><subject>Recovery</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Substrates</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFv1DAQhSMEolXpH-CAInHhkmJ7bMe-IKEKaKUKDsDZmsTjNCtvUuwsEv8e76aULgd88cj-_OZ5XlW95OyCMzBvs-RStw0TogEpQDXwpDoVTPKGtwKePqpPqvOcN6wssNxI-bw6AQ3CMgGn1eevFENzSxixi1TfpXFayNdbHCZaxr4OI0VfZ5rynHK9y-M01BgXShMu-_oYzC-qZwFjpvP7_az6_vHDt8ur5ubLp-vL9zdNryRbGlIiqN6agD3X0EqvQmt10FwFixaU7oPqOtGKoK1QynZCS9Fppo0lBAQ4q65XXT_jxhXXW0y_3IyjOxzMaXCYiq1IDjzzXgRDDFupPKLpSKA0rfFee82L1rtV627Xbcn3NC0J45Ho8c003rph_umsBl48FYE39wJp_rGjvLjtmHuKESead9mJFoQCqaUp6Ot_0M28K7OMB6rMQhnTFkqsVJ_mnBOFBzOcuX36bk3flfTdIX23H8mrx994ePIn6wLACuR9ygOlv73_I_sbmcS6ow</recordid><startdate>20221103</startdate><enddate>20221103</enddate><creator>Xu, Rui</creator><creator>Cañón Bermúdez, Gilbert Santiago</creator><creator>Pylypovskyi, Oleksandr V.</creator><creator>Volkov, Oleksii M.</creator><creator>Oliveros Mata, Eduardo Sergio</creator><creator>Zabila, Yevhen</creator><creator>Illing, Rico</creator><creator>Makushko, Pavlo</creator><creator>Milkin, Pavel</creator><creator>Ionov, Leonid</creator><creator>Fassbender, Jürgen</creator><creator>Makarov, Denys</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5947-9760</orcidid><orcidid>https://orcid.org/0000-0003-3893-9630</orcidid><orcidid>https://orcid.org/0000-0001-7246-4099</orcidid><orcidid>https://orcid.org/0000-0002-7277-7287</orcidid><orcidid>https://orcid.org/0000-0002-1660-4437</orcidid><orcidid>https://orcid.org/0000-0002-7177-4308</orcidid></search><sort><creationdate>20221103</creationdate><title>Self-healable printed magnetic field sensors using alternating magnetic fields</title><author>Xu, Rui ; Cañón Bermúdez, Gilbert Santiago ; Pylypovskyi, Oleksandr V. ; Volkov, Oleksii M. ; Oliveros Mata, Eduardo Sergio ; Zabila, Yevhen ; Illing, Rico ; Makushko, Pavlo ; Milkin, Pavel ; Ionov, Leonid ; Fassbender, Jürgen ; Makarov, Denys</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e52f5c98fac16374d5f796f615f9a9356cf5bb272f692559b2642b60689ea3a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>147/135</topic><topic>639/166/987</topic><topic>639/166/988</topic><topic>639/301/1005/1009</topic><topic>Augmented reality</topic><topic>Figure of merit</topic><topic>Fillers</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Industrial applications</topic><topic>Interfaces</topic><topic>Low noise</topic><topic>Magnetic Fields</topic><topic>Magnetics</topic><topic>Magnetism</topic><topic>Magnetoresistivity</topic><topic>Man-machine interfaces</topic><topic>Microparticles</topic><topic>multidisciplinary</topic><topic>Percolation</topic><topic>Recovery</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Cañón Bermúdez, Gilbert Santiago</creatorcontrib><creatorcontrib>Pylypovskyi, Oleksandr V.</creatorcontrib><creatorcontrib>Volkov, Oleksii M.</creatorcontrib><creatorcontrib>Oliveros Mata, Eduardo Sergio</creatorcontrib><creatorcontrib>Zabila, Yevhen</creatorcontrib><creatorcontrib>Illing, Rico</creatorcontrib><creatorcontrib>Makushko, Pavlo</creatorcontrib><creatorcontrib>Milkin, Pavel</creatorcontrib><creatorcontrib>Ionov, Leonid</creatorcontrib><creatorcontrib>Fassbender, Jürgen</creatorcontrib><creatorcontrib>Makarov, Denys</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Rui</au><au>Cañón Bermúdez, Gilbert Santiago</au><au>Pylypovskyi, Oleksandr V.</au><au>Volkov, Oleksii M.</au><au>Oliveros Mata, Eduardo Sergio</au><au>Zabila, Yevhen</au><au>Illing, Rico</au><au>Makushko, Pavlo</au><au>Milkin, Pavel</au><au>Ionov, Leonid</au><au>Fassbender, Jürgen</au><au>Makarov, Denys</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-healable printed magnetic field sensors using alternating magnetic fields</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-11-03</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>6587</spage><epage>6587</epage><pages>6587-6587</pages><artnum>6587</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders of magnitude relative to previous reports. These sensors display low noise, high resolution, and are readily processable using various printing techniques that can be applied to different substrates. The AMF-mediated self-healing has six characteristics: 100% performance recovery; repeatable healing over multiple cycles; room-temperature operation; healing in seconds; no need for manual reassembly; humidity insensitivity. It is found that the above advantages arise from the AMF-induced attraction of magnetic microparticles and the determinative oscillation that work synergistically to improve the quantity and quality of filler contacts. By virtue of these advantages, the AMF-mediated sensors are used in safety application, medical therapy, and human-machine interfaces for augmented reality.
Flexible magnetic sensors with high sensitivity have a wide variety of medical and industrial uses, however, making such sensors robust and flexible at the same time can be challenging. Here, the authors demonstrate a high sensitivity flexible magnetic sensor that exhibits self-healing under an applied alternative magnetic field, with complete performance recovery.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36329023</pmid><doi>10.1038/s41467-022-34235-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5947-9760</orcidid><orcidid>https://orcid.org/0000-0003-3893-9630</orcidid><orcidid>https://orcid.org/0000-0001-7246-4099</orcidid><orcidid>https://orcid.org/0000-0002-7277-7287</orcidid><orcidid>https://orcid.org/0000-0002-1660-4437</orcidid><orcidid>https://orcid.org/0000-0002-7177-4308</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-11, Vol.13 (1), p.6587-6587, Article 6587 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3d0dd2f8e0a745daa8be2a4878dd6d61 |
source | Open Access: PubMed Central; Publicly Available Content Database; Nature; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 147/135 639/166/987 639/166/988 639/301/1005/1009 Augmented reality Figure of merit Fillers Humanities and Social Sciences Humans Industrial applications Interfaces Low noise Magnetic Fields Magnetics Magnetism Magnetoresistivity Man-machine interfaces Microparticles multidisciplinary Percolation Recovery Room temperature Science Science (multidisciplinary) Sensitivity enhancement Sensors Substrates |
title | Self-healable printed magnetic field sensors using alternating magnetic fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-healable%20printed%20magnetic%20field%20sensors%20using%20alternating%20magnetic%20fields&rft.jtitle=Nature%20communications&rft.au=Xu,%20Rui&rft.date=2022-11-03&rft.volume=13&rft.issue=1&rft.spage=6587&rft.epage=6587&rft.pages=6587-6587&rft.artnum=6587&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-34235-3&rft_dat=%3Cproquest_doaj_%3E2732534648%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-e52f5c98fac16374d5f796f615f9a9356cf5bb272f692559b2642b60689ea3a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731635887&rft_id=info:pmid/36329023&rfr_iscdi=true |