Loading…

Assessment of Remediation of Municipal Wastewater Using Activated Carbon Produced from Sewage Sludge

This study evaluates the potential to synthesize an adsorbent for wastewater remediation applications from an anaerobic digestion by-product synthesized using biomaterials and a less energy-intensive process. The synthesized sludge-based granular activated carbon (GAC) was used to adsorb Cr(VI) and...

Full description

Saved in:
Bibliographic Details
Published in:Fermentation (Basel) 2023-08, Vol.9 (8), p.769
Main Authors: Mudzanani, Khuthadzo, Iyuke, Sunny, Daramola, Michael O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study evaluates the potential to synthesize an adsorbent for wastewater remediation applications from an anaerobic digestion by-product synthesized using biomaterials and a less energy-intensive process. The synthesized sludge-based granular activated carbon (GAC) was used to adsorb Cr(VI) and Cd(II) in a batch reactor stirred for 24 h at 25 °C. The surface chemistry of the material was assessed porosity with BET, SEM for morphology, EDS-XRF for elemental analysis, and functional groups on these materials using FTIR and TGA for thermal profile. SBET of the SAC was discovered to be 481.370 m2/g with a VT of 0.337 cm3/g, respectively 9.02 and 2.23 times greater than raw sludge. The modification to SAC shows a dramatic increase in performance from 40% to 98.9% equilibrium adsorption rate. The maximum or equilibrium removal (99.99%) of Cr(VI) and Cd(II) was achieved by 0.8 and 1.4 g SAC dosage, respectively. Thus, it can be concluded that activation of sewage sludge was effective in enhancing the surface area and pore volume which made it suitable for AMD remediation application.
ISSN:2311-5637
2311-5637
DOI:10.3390/fermentation9080769