Loading…
Local Channels under Decomposition of Quantum Gates in Bipartite Systems
For a bipartite quantum system with Hilbert space Hm⊗Hn, this paper considers a quantum channel ϕ from the system to itself which preserves the set of separable states. Within this class of quantum channels, the paper characterizes those channels which preserve the Tsallis entropy of combinations of...
Saved in:
Published in: | Journal of mathematics (Hidawi) 2023, Vol.2023, p.1-8 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-4dbfa0df72f478f21c2b0015fa9a80340a97074bb0253f270801ce90c601514d3 |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | Journal of mathematics (Hidawi) |
container_volume | 2023 |
creator | Lao, Yihui Wang, Pei Liao, Shanli |
description | For a bipartite quantum system with Hilbert space Hm⊗Hn, this paper considers a quantum channel ϕ from the system to itself which preserves the set of separable states. Within this class of quantum channels, the paper characterizes those channels which preserve the Tsallis entropy of combinations of separable states through decomposing quantum gates, where the characterization is given in terms of the action of the channel on separable states. |
doi_str_mv | 10.1155/2023/2130374 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3d2308d7e6d74c42808a58a747ccc80c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3d2308d7e6d74c42808a58a747ccc80c</doaj_id><sourcerecordid>2791039408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-4dbfa0df72f478f21c2b0015fa9a80340a97074bb0253f270801ce90c601514d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsNTe_AEBj1o7-dhN9qhV20JBRD2HbD5sSndTk12k_96trR49zTA8vPPwZtklhluM83xCgNAJwRQoZyfZgFDMxoyL_PR3L0h5no1SWgMAJoKKEgbZfBm02qDpSjWN3STUNcZG9GB1qLch-daHBgWHXjrVtF2NZqq1CfkG3futiq1vLXrdpdbW6SI7c2qT7Og4h9n70-PbdD5ePs8W07vlWNMC2jEzlVNgHCeul3MEa1L1OrlTpRJAGaiSA2dVBSSnjnAQgLUtQRc9hJmhw2xxyDVBreU2-lrFnQzKy59DiB9yL6Y3VlJDKAjDbWE404wIECoXijOutRag-6yrQ9Y2hs_OplauQxebXl8SXmKgJQPRUzcHSseQUrTu7ysGua9e7quXx-p7_PqAr3xj1Jf_n_4G3MmAMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791039408</pqid></control><display><type>article</type><title>Local Channels under Decomposition of Quantum Gates in Bipartite Systems</title><source>Publicly Available Content Database</source><source>Wiley-Blackwell Open Access Titles (Open Access)</source><creator>Lao, Yihui ; Wang, Pei ; Liao, Shanli</creator><contributor>Jing, Naihuan ; Naihuan Jing</contributor><creatorcontrib>Lao, Yihui ; Wang, Pei ; Liao, Shanli ; Jing, Naihuan ; Naihuan Jing</creatorcontrib><description>For a bipartite quantum system with Hilbert space Hm⊗Hn, this paper considers a quantum channel ϕ from the system to itself which preserves the set of separable states. Within this class of quantum channels, the paper characterizes those channels which preserve the Tsallis entropy of combinations of separable states through decomposing quantum gates, where the characterization is given in terms of the action of the channel on separable states.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2023/2130374</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Channels ; Decomposition ; Entropy ; Equality ; Hilbert space ; Mathematics ; Quantum theory</subject><ispartof>Journal of mathematics (Hidawi), 2023, Vol.2023, p.1-8</ispartof><rights>Copyright © 2023 Yihui Lao et al.</rights><rights>Copyright © 2023 Yihui Lao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-4dbfa0df72f478f21c2b0015fa9a80340a97074bb0253f270801ce90c601514d3</cites><orcidid>0000-0002-4096-2891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791039408/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791039408?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Jing, Naihuan</contributor><contributor>Naihuan Jing</contributor><creatorcontrib>Lao, Yihui</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Liao, Shanli</creatorcontrib><title>Local Channels under Decomposition of Quantum Gates in Bipartite Systems</title><title>Journal of mathematics (Hidawi)</title><description>For a bipartite quantum system with Hilbert space Hm⊗Hn, this paper considers a quantum channel ϕ from the system to itself which preserves the set of separable states. Within this class of quantum channels, the paper characterizes those channels which preserve the Tsallis entropy of combinations of separable states through decomposing quantum gates, where the characterization is given in terms of the action of the channel on separable states.</description><subject>Channels</subject><subject>Decomposition</subject><subject>Entropy</subject><subject>Equality</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Quantum theory</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhhdRsNTe_AEBj1o7-dhN9qhV20JBRD2HbD5sSndTk12k_96trR49zTA8vPPwZtklhluM83xCgNAJwRQoZyfZgFDMxoyL_PR3L0h5no1SWgMAJoKKEgbZfBm02qDpSjWN3STUNcZG9GB1qLch-daHBgWHXjrVtF2NZqq1CfkG3futiq1vLXrdpdbW6SI7c2qT7Og4h9n70-PbdD5ePs8W07vlWNMC2jEzlVNgHCeul3MEa1L1OrlTpRJAGaiSA2dVBSSnjnAQgLUtQRc9hJmhw2xxyDVBreU2-lrFnQzKy59DiB9yL6Y3VlJDKAjDbWE404wIECoXijOutRag-6yrQ9Y2hs_OplauQxebXl8SXmKgJQPRUzcHSseQUrTu7ysGua9e7quXx-p7_PqAr3xj1Jf_n_4G3MmAMA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Lao, Yihui</creator><creator>Wang, Pei</creator><creator>Liao, Shanli</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4096-2891</orcidid></search><sort><creationdate>2023</creationdate><title>Local Channels under Decomposition of Quantum Gates in Bipartite Systems</title><author>Lao, Yihui ; Wang, Pei ; Liao, Shanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-4dbfa0df72f478f21c2b0015fa9a80340a97074bb0253f270801ce90c601514d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Channels</topic><topic>Decomposition</topic><topic>Entropy</topic><topic>Equality</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lao, Yihui</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Liao, Shanli</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lao, Yihui</au><au>Wang, Pei</au><au>Liao, Shanli</au><au>Jing, Naihuan</au><au>Naihuan Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Channels under Decomposition of Quantum Gates in Bipartite Systems</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>For a bipartite quantum system with Hilbert space Hm⊗Hn, this paper considers a quantum channel ϕ from the system to itself which preserves the set of separable states. Within this class of quantum channels, the paper characterizes those channels which preserve the Tsallis entropy of combinations of separable states through decomposing quantum gates, where the characterization is given in terms of the action of the channel on separable states.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2023/2130374</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4096-2891</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-4629 |
ispartof | Journal of mathematics (Hidawi), 2023, Vol.2023, p.1-8 |
issn | 2314-4629 2314-4785 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3d2308d7e6d74c42808a58a747ccc80c |
source | Publicly Available Content Database; Wiley-Blackwell Open Access Titles (Open Access) |
subjects | Channels Decomposition Entropy Equality Hilbert space Mathematics Quantum theory |
title | Local Channels under Decomposition of Quantum Gates in Bipartite Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Channels%20under%20Decomposition%20of%20Quantum%20Gates%20in%20Bipartite%20Systems&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Lao,%20Yihui&rft.date=2023&rft.volume=2023&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2023/2130374&rft_dat=%3Cproquest_doaj_%3E2791039408%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-4dbfa0df72f478f21c2b0015fa9a80340a97074bb0253f270801ce90c601514d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791039408&rft_id=info:pmid/&rfr_iscdi=true |