Loading…

Local Channels under Decomposition of Quantum Gates in Bipartite Systems

For a bipartite quantum system with Hilbert space Hm⊗Hn, this paper considers a quantum channel ϕ from the system to itself which preserves the set of separable states. Within this class of quantum channels, the paper characterizes those channels which preserve the Tsallis entropy of combinations of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematics (Hidawi) 2023, Vol.2023, p.1-8
Main Authors: Lao, Yihui, Wang, Pei, Liao, Shanli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c360t-4dbfa0df72f478f21c2b0015fa9a80340a97074bb0253f270801ce90c601514d3
container_end_page 8
container_issue
container_start_page 1
container_title Journal of mathematics (Hidawi)
container_volume 2023
creator Lao, Yihui
Wang, Pei
Liao, Shanli
description For a bipartite quantum system with Hilbert space Hm⊗Hn, this paper considers a quantum channel ϕ from the system to itself which preserves the set of separable states. Within this class of quantum channels, the paper characterizes those channels which preserve the Tsallis entropy of combinations of separable states through decomposing quantum gates, where the characterization is given in terms of the action of the channel on separable states.
doi_str_mv 10.1155/2023/2130374
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3d2308d7e6d74c42808a58a747ccc80c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3d2308d7e6d74c42808a58a747ccc80c</doaj_id><sourcerecordid>2791039408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-4dbfa0df72f478f21c2b0015fa9a80340a97074bb0253f270801ce90c601514d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsNTe_AEBj1o7-dhN9qhV20JBRD2HbD5sSndTk12k_96trR49zTA8vPPwZtklhluM83xCgNAJwRQoZyfZgFDMxoyL_PR3L0h5no1SWgMAJoKKEgbZfBm02qDpSjWN3STUNcZG9GB1qLch-daHBgWHXjrVtF2NZqq1CfkG3futiq1vLXrdpdbW6SI7c2qT7Og4h9n70-PbdD5ePs8W07vlWNMC2jEzlVNgHCeul3MEa1L1OrlTpRJAGaiSA2dVBSSnjnAQgLUtQRc9hJmhw2xxyDVBreU2-lrFnQzKy59DiB9yL6Y3VlJDKAjDbWE404wIECoXijOutRag-6yrQ9Y2hs_OplauQxebXl8SXmKgJQPRUzcHSseQUrTu7ysGua9e7quXx-p7_PqAr3xj1Jf_n_4G3MmAMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791039408</pqid></control><display><type>article</type><title>Local Channels under Decomposition of Quantum Gates in Bipartite Systems</title><source>Publicly Available Content Database</source><source>Wiley-Blackwell Open Access Titles (Open Access)</source><creator>Lao, Yihui ; Wang, Pei ; Liao, Shanli</creator><contributor>Jing, Naihuan ; Naihuan Jing</contributor><creatorcontrib>Lao, Yihui ; Wang, Pei ; Liao, Shanli ; Jing, Naihuan ; Naihuan Jing</creatorcontrib><description>For a bipartite quantum system with Hilbert space Hm⊗Hn, this paper considers a quantum channel ϕ from the system to itself which preserves the set of separable states. Within this class of quantum channels, the paper characterizes those channels which preserve the Tsallis entropy of combinations of separable states through decomposing quantum gates, where the characterization is given in terms of the action of the channel on separable states.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2023/2130374</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Channels ; Decomposition ; Entropy ; Equality ; Hilbert space ; Mathematics ; Quantum theory</subject><ispartof>Journal of mathematics (Hidawi), 2023, Vol.2023, p.1-8</ispartof><rights>Copyright © 2023 Yihui Lao et al.</rights><rights>Copyright © 2023 Yihui Lao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-4dbfa0df72f478f21c2b0015fa9a80340a97074bb0253f270801ce90c601514d3</cites><orcidid>0000-0002-4096-2891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791039408/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791039408?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Jing, Naihuan</contributor><contributor>Naihuan Jing</contributor><creatorcontrib>Lao, Yihui</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Liao, Shanli</creatorcontrib><title>Local Channels under Decomposition of Quantum Gates in Bipartite Systems</title><title>Journal of mathematics (Hidawi)</title><description>For a bipartite quantum system with Hilbert space Hm⊗Hn, this paper considers a quantum channel ϕ from the system to itself which preserves the set of separable states. Within this class of quantum channels, the paper characterizes those channels which preserve the Tsallis entropy of combinations of separable states through decomposing quantum gates, where the characterization is given in terms of the action of the channel on separable states.</description><subject>Channels</subject><subject>Decomposition</subject><subject>Entropy</subject><subject>Equality</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Quantum theory</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhhdRsNTe_AEBj1o7-dhN9qhV20JBRD2HbD5sSndTk12k_96trR49zTA8vPPwZtklhluM83xCgNAJwRQoZyfZgFDMxoyL_PR3L0h5no1SWgMAJoKKEgbZfBm02qDpSjWN3STUNcZG9GB1qLch-daHBgWHXjrVtF2NZqq1CfkG3futiq1vLXrdpdbW6SI7c2qT7Og4h9n70-PbdD5ePs8W07vlWNMC2jEzlVNgHCeul3MEa1L1OrlTpRJAGaiSA2dVBSSnjnAQgLUtQRc9hJmhw2xxyDVBreU2-lrFnQzKy59DiB9yL6Y3VlJDKAjDbWE404wIECoXijOutRag-6yrQ9Y2hs_OplauQxebXl8SXmKgJQPRUzcHSseQUrTu7ysGua9e7quXx-p7_PqAr3xj1Jf_n_4G3MmAMA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Lao, Yihui</creator><creator>Wang, Pei</creator><creator>Liao, Shanli</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4096-2891</orcidid></search><sort><creationdate>2023</creationdate><title>Local Channels under Decomposition of Quantum Gates in Bipartite Systems</title><author>Lao, Yihui ; Wang, Pei ; Liao, Shanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-4dbfa0df72f478f21c2b0015fa9a80340a97074bb0253f270801ce90c601514d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Channels</topic><topic>Decomposition</topic><topic>Entropy</topic><topic>Equality</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lao, Yihui</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Liao, Shanli</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lao, Yihui</au><au>Wang, Pei</au><au>Liao, Shanli</au><au>Jing, Naihuan</au><au>Naihuan Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Channels under Decomposition of Quantum Gates in Bipartite Systems</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>For a bipartite quantum system with Hilbert space Hm⊗Hn, this paper considers a quantum channel ϕ from the system to itself which preserves the set of separable states. Within this class of quantum channels, the paper characterizes those channels which preserve the Tsallis entropy of combinations of separable states through decomposing quantum gates, where the characterization is given in terms of the action of the channel on separable states.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2023/2130374</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4096-2891</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-4629
ispartof Journal of mathematics (Hidawi), 2023, Vol.2023, p.1-8
issn 2314-4629
2314-4785
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3d2308d7e6d74c42808a58a747ccc80c
source Publicly Available Content Database; Wiley-Blackwell Open Access Titles (Open Access)
subjects Channels
Decomposition
Entropy
Equality
Hilbert space
Mathematics
Quantum theory
title Local Channels under Decomposition of Quantum Gates in Bipartite Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Channels%20under%20Decomposition%20of%20Quantum%20Gates%20in%20Bipartite%20Systems&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Lao,%20Yihui&rft.date=2023&rft.volume=2023&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2023/2130374&rft_dat=%3Cproquest_doaj_%3E2791039408%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-4dbfa0df72f478f21c2b0015fa9a80340a97074bb0253f270801ce90c601514d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791039408&rft_id=info:pmid/&rfr_iscdi=true