Loading…

Spectrum sensing based on adaptive sampling of received signal

Spectrum sensing (SS) has been heatedly discussed due to its capacity to discover the idle registered spectrum bands, which effectively alleviates the shortage of spectrum by spectrum reuse. Energy detector (ED) is widely accepted for SS as its complexity is very low. In this paper, an adaptive samp...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on wireless communications and networking 2021-07, Vol.2021 (1), p.1-17, Article 156
Main Authors: Miao, Jiawu, Tan, Youheng, Zhang, Yangying, Li, Yuebo, Mu, Junsheng, Jing, Xiaojun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c380t-901aa1dee9ec7e59a57b74e86fc113f8302458f329c4b110d3880c6e0ba134673
container_end_page 17
container_issue 1
container_start_page 1
container_title EURASIP journal on wireless communications and networking
container_volume 2021
creator Miao, Jiawu
Tan, Youheng
Zhang, Yangying
Li, Yuebo
Mu, Junsheng
Jing, Xiaojun
description Spectrum sensing (SS) has been heatedly discussed due to its capacity to discover the idle registered spectrum bands, which effectively alleviates the shortage of spectrum by spectrum reuse. Energy detector (ED) is widely accepted for SS as its complexity is very low. In this paper, an adaptive sampling scheme is proposed to improve the sensing performance of ED, where the sampling point of the received signal is adaptively adjusted with the environment signal-to-noise ratio (SNR). When SNR decreases, the sensing performance can be maintained and even improved by the rise of the sampling point. When SNR increases, the improved ED is considered for idle spectrum detection. The SNR is evaluated based on the joint of convolutional neural network (CNN) and long short-term memory (LSTM) network. Both theoretical derivations and simulation experiments validate the effectiveness of the proposed scheme.
doi_str_mv 10.1186/s13638-021-02027-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3d630819d90b435a9ce333e4a1c07081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3d630819d90b435a9ce333e4a1c07081</doaj_id><sourcerecordid>2551417365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-901aa1dee9ec7e59a57b74e86fc113f8302458f329c4b110d3880c6e0ba134673</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoHPBU8VzOdtEkugix-LCx4UM8hTaelS7etSdfFf292K-rJwzDDm_feMC-KLoFdA8j8xgPmKBOWQiiWimR3FM0glyIBrtTxn_k0OvN-zRgiV-ksun0ZyI5uu4k9db7p6rgwnsq472JTmmFsPij2ZjO0-1VfxY4sBayMfVN3pj2PTirTerr47vPo7eH-dfGUrJ4fl4u7VWJRsjFRDIyBkkiRFZQpk4lCcJJ5ZQGwkshSnskKU2V5AcBKlJLZnFhhAHkucB4tJ9-yN2s9uGZj3KfuTaMPQO9qbdzY2JY0ljkyCapUrOCYGWUJEYkbsEyERfC6mrwG179vyY963W9deMbrNMuAg8A8C6x0YlnXe--o-rkKTO8z11PmOmSuD5nrXRDhJPKB3NXkfq3_UX0BiBKC7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551417365</pqid></control><display><type>article</type><title>Spectrum sensing based on adaptive sampling of received signal</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Miao, Jiawu ; Tan, Youheng ; Zhang, Yangying ; Li, Yuebo ; Mu, Junsheng ; Jing, Xiaojun</creator><creatorcontrib>Miao, Jiawu ; Tan, Youheng ; Zhang, Yangying ; Li, Yuebo ; Mu, Junsheng ; Jing, Xiaojun</creatorcontrib><description>Spectrum sensing (SS) has been heatedly discussed due to its capacity to discover the idle registered spectrum bands, which effectively alleviates the shortage of spectrum by spectrum reuse. Energy detector (ED) is widely accepted for SS as its complexity is very low. In this paper, an adaptive sampling scheme is proposed to improve the sensing performance of ED, where the sampling point of the received signal is adaptively adjusted with the environment signal-to-noise ratio (SNR). When SNR decreases, the sensing performance can be maintained and even improved by the rise of the sampling point. When SNR increases, the improved ED is considered for idle spectrum detection. The SNR is evaluated based on the joint of convolutional neural network (CNN) and long short-term memory (LSTM) network. Both theoretical derivations and simulation experiments validate the effectiveness of the proposed scheme.</description><identifier>ISSN: 1687-1499</identifier><identifier>ISSN: 1687-1472</identifier><identifier>EISSN: 1687-1499</identifier><identifier>DOI: 10.1186/s13638-021-02027-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Adaptive sampling ; Artificial neural networks ; Communications Engineering ; Communications networks ; Energy detector ; Engineering ; Evolutional Trends of Intelligent IoT in 5G Era ; Experiments ; False alarms ; Information Systems Applications (incl.Internet) ; Internet of Things ; Networks ; Sensors ; Signal to noise ratio ; Signal,Image and Speech Processing ; Simulation ; Spectrum allocation ; Spectrum sensing ; Wireless communications ; Wireless networks</subject><ispartof>EURASIP journal on wireless communications and networking, 2021-07, Vol.2021 (1), p.1-17, Article 156</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-901aa1dee9ec7e59a57b74e86fc113f8302458f329c4b110d3880c6e0ba134673</cites><orcidid>0000-0003-2560-4364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2551417365/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2551417365?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Miao, Jiawu</creatorcontrib><creatorcontrib>Tan, Youheng</creatorcontrib><creatorcontrib>Zhang, Yangying</creatorcontrib><creatorcontrib>Li, Yuebo</creatorcontrib><creatorcontrib>Mu, Junsheng</creatorcontrib><creatorcontrib>Jing, Xiaojun</creatorcontrib><title>Spectrum sensing based on adaptive sampling of received signal</title><title>EURASIP journal on wireless communications and networking</title><addtitle>J Wireless Com Network</addtitle><description>Spectrum sensing (SS) has been heatedly discussed due to its capacity to discover the idle registered spectrum bands, which effectively alleviates the shortage of spectrum by spectrum reuse. Energy detector (ED) is widely accepted for SS as its complexity is very low. In this paper, an adaptive sampling scheme is proposed to improve the sensing performance of ED, where the sampling point of the received signal is adaptively adjusted with the environment signal-to-noise ratio (SNR). When SNR decreases, the sensing performance can be maintained and even improved by the rise of the sampling point. When SNR increases, the improved ED is considered for idle spectrum detection. The SNR is evaluated based on the joint of convolutional neural network (CNN) and long short-term memory (LSTM) network. Both theoretical derivations and simulation experiments validate the effectiveness of the proposed scheme.</description><subject>Accuracy</subject><subject>Adaptive sampling</subject><subject>Artificial neural networks</subject><subject>Communications Engineering</subject><subject>Communications networks</subject><subject>Energy detector</subject><subject>Engineering</subject><subject>Evolutional Trends of Intelligent IoT in 5G Era</subject><subject>Experiments</subject><subject>False alarms</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Internet of Things</subject><subject>Networks</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Signal,Image and Speech Processing</subject><subject>Simulation</subject><subject>Spectrum allocation</subject><subject>Spectrum sensing</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1687-1499</issn><issn>1687-1472</issn><issn>1687-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UE1LxDAQLaLguvoHPBU8VzOdtEkugix-LCx4UM8hTaelS7etSdfFf292K-rJwzDDm_feMC-KLoFdA8j8xgPmKBOWQiiWimR3FM0glyIBrtTxn_k0OvN-zRgiV-ksun0ZyI5uu4k9db7p6rgwnsq472JTmmFsPij2ZjO0-1VfxY4sBayMfVN3pj2PTirTerr47vPo7eH-dfGUrJ4fl4u7VWJRsjFRDIyBkkiRFZQpk4lCcJJ5ZQGwkshSnskKU2V5AcBKlJLZnFhhAHkucB4tJ9-yN2s9uGZj3KfuTaMPQO9qbdzY2JY0ljkyCapUrOCYGWUJEYkbsEyERfC6mrwG179vyY963W9deMbrNMuAg8A8C6x0YlnXe--o-rkKTO8z11PmOmSuD5nrXRDhJPKB3NXkfq3_UX0BiBKC7A</recordid><startdate>20210714</startdate><enddate>20210714</enddate><creator>Miao, Jiawu</creator><creator>Tan, Youheng</creator><creator>Zhang, Yangying</creator><creator>Li, Yuebo</creator><creator>Mu, Junsheng</creator><creator>Jing, Xiaojun</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2560-4364</orcidid></search><sort><creationdate>20210714</creationdate><title>Spectrum sensing based on adaptive sampling of received signal</title><author>Miao, Jiawu ; Tan, Youheng ; Zhang, Yangying ; Li, Yuebo ; Mu, Junsheng ; Jing, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-901aa1dee9ec7e59a57b74e86fc113f8302458f329c4b110d3880c6e0ba134673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adaptive sampling</topic><topic>Artificial neural networks</topic><topic>Communications Engineering</topic><topic>Communications networks</topic><topic>Energy detector</topic><topic>Engineering</topic><topic>Evolutional Trends of Intelligent IoT in 5G Era</topic><topic>Experiments</topic><topic>False alarms</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Internet of Things</topic><topic>Networks</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Signal,Image and Speech Processing</topic><topic>Simulation</topic><topic>Spectrum allocation</topic><topic>Spectrum sensing</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Jiawu</creatorcontrib><creatorcontrib>Tan, Youheng</creatorcontrib><creatorcontrib>Zhang, Yangying</creatorcontrib><creatorcontrib>Li, Yuebo</creatorcontrib><creatorcontrib>Mu, Junsheng</creatorcontrib><creatorcontrib>Jing, Xiaojun</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>EURASIP journal on wireless communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Jiawu</au><au>Tan, Youheng</au><au>Zhang, Yangying</au><au>Li, Yuebo</au><au>Mu, Junsheng</au><au>Jing, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrum sensing based on adaptive sampling of received signal</atitle><jtitle>EURASIP journal on wireless communications and networking</jtitle><stitle>J Wireless Com Network</stitle><date>2021-07-14</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>156</artnum><issn>1687-1499</issn><issn>1687-1472</issn><eissn>1687-1499</eissn><abstract>Spectrum sensing (SS) has been heatedly discussed due to its capacity to discover the idle registered spectrum bands, which effectively alleviates the shortage of spectrum by spectrum reuse. Energy detector (ED) is widely accepted for SS as its complexity is very low. In this paper, an adaptive sampling scheme is proposed to improve the sensing performance of ED, where the sampling point of the received signal is adaptively adjusted with the environment signal-to-noise ratio (SNR). When SNR decreases, the sensing performance can be maintained and even improved by the rise of the sampling point. When SNR increases, the improved ED is considered for idle spectrum detection. The SNR is evaluated based on the joint of convolutional neural network (CNN) and long short-term memory (LSTM) network. Both theoretical derivations and simulation experiments validate the effectiveness of the proposed scheme.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13638-021-02027-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2560-4364</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1499
ispartof EURASIP journal on wireless communications and networking, 2021-07, Vol.2021 (1), p.1-17, Article 156
issn 1687-1499
1687-1472
1687-1499
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3d630819d90b435a9ce333e4a1c07081
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Accuracy
Adaptive sampling
Artificial neural networks
Communications Engineering
Communications networks
Energy detector
Engineering
Evolutional Trends of Intelligent IoT in 5G Era
Experiments
False alarms
Information Systems Applications (incl.Internet)
Internet of Things
Networks
Sensors
Signal to noise ratio
Signal,Image and Speech Processing
Simulation
Spectrum allocation
Spectrum sensing
Wireless communications
Wireless networks
title Spectrum sensing based on adaptive sampling of received signal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrum%20sensing%20based%20on%20adaptive%20sampling%20of%20received%20signal&rft.jtitle=EURASIP%20journal%20on%20wireless%20communications%20and%20networking&rft.au=Miao,%20Jiawu&rft.date=2021-07-14&rft.volume=2021&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=156&rft.issn=1687-1499&rft.eissn=1687-1499&rft_id=info:doi/10.1186/s13638-021-02027-w&rft_dat=%3Cproquest_doaj_%3E2551417365%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-901aa1dee9ec7e59a57b74e86fc113f8302458f329c4b110d3880c6e0ba134673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551417365&rft_id=info:pmid/&rfr_iscdi=true