Loading…
Spectrum sensing based on adaptive sampling of received signal
Spectrum sensing (SS) has been heatedly discussed due to its capacity to discover the idle registered spectrum bands, which effectively alleviates the shortage of spectrum by spectrum reuse. Energy detector (ED) is widely accepted for SS as its complexity is very low. In this paper, an adaptive samp...
Saved in:
Published in: | EURASIP journal on wireless communications and networking 2021-07, Vol.2021 (1), p.1-17, Article 156 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-901aa1dee9ec7e59a57b74e86fc113f8302458f329c4b110d3880c6e0ba134673 |
container_end_page | 17 |
container_issue | 1 |
container_start_page | 1 |
container_title | EURASIP journal on wireless communications and networking |
container_volume | 2021 |
creator | Miao, Jiawu Tan, Youheng Zhang, Yangying Li, Yuebo Mu, Junsheng Jing, Xiaojun |
description | Spectrum sensing (SS) has been heatedly discussed due to its capacity to discover the idle registered spectrum bands, which effectively alleviates the shortage of spectrum by spectrum reuse. Energy detector (ED) is widely accepted for SS as its complexity is very low. In this paper, an adaptive sampling scheme is proposed to improve the sensing performance of ED, where the sampling point of the received signal is adaptively adjusted with the environment signal-to-noise ratio (SNR). When SNR decreases, the sensing performance can be maintained and even improved by the rise of the sampling point. When SNR increases, the improved ED is considered for idle spectrum detection. The SNR is evaluated based on the joint of convolutional neural network (CNN) and long short-term memory (LSTM) network. Both theoretical derivations and simulation experiments validate the effectiveness of the proposed scheme. |
doi_str_mv | 10.1186/s13638-021-02027-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3d630819d90b435a9ce333e4a1c07081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3d630819d90b435a9ce333e4a1c07081</doaj_id><sourcerecordid>2551417365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-901aa1dee9ec7e59a57b74e86fc113f8302458f329c4b110d3880c6e0ba134673</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoHPBU8VzOdtEkugix-LCx4UM8hTaelS7etSdfFf292K-rJwzDDm_feMC-KLoFdA8j8xgPmKBOWQiiWimR3FM0glyIBrtTxn_k0OvN-zRgiV-ksun0ZyI5uu4k9db7p6rgwnsq472JTmmFsPij2ZjO0-1VfxY4sBayMfVN3pj2PTirTerr47vPo7eH-dfGUrJ4fl4u7VWJRsjFRDIyBkkiRFZQpk4lCcJJ5ZQGwkshSnskKU2V5AcBKlJLZnFhhAHkucB4tJ9-yN2s9uGZj3KfuTaMPQO9qbdzY2JY0ljkyCapUrOCYGWUJEYkbsEyERfC6mrwG179vyY963W9deMbrNMuAg8A8C6x0YlnXe--o-rkKTO8z11PmOmSuD5nrXRDhJPKB3NXkfq3_UX0BiBKC7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551417365</pqid></control><display><type>article</type><title>Spectrum sensing based on adaptive sampling of received signal</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Miao, Jiawu ; Tan, Youheng ; Zhang, Yangying ; Li, Yuebo ; Mu, Junsheng ; Jing, Xiaojun</creator><creatorcontrib>Miao, Jiawu ; Tan, Youheng ; Zhang, Yangying ; Li, Yuebo ; Mu, Junsheng ; Jing, Xiaojun</creatorcontrib><description>Spectrum sensing (SS) has been heatedly discussed due to its capacity to discover the idle registered spectrum bands, which effectively alleviates the shortage of spectrum by spectrum reuse. Energy detector (ED) is widely accepted for SS as its complexity is very low. In this paper, an adaptive sampling scheme is proposed to improve the sensing performance of ED, where the sampling point of the received signal is adaptively adjusted with the environment signal-to-noise ratio (SNR). When SNR decreases, the sensing performance can be maintained and even improved by the rise of the sampling point. When SNR increases, the improved ED is considered for idle spectrum detection. The SNR is evaluated based on the joint of convolutional neural network (CNN) and long short-term memory (LSTM) network. Both theoretical derivations and simulation experiments validate the effectiveness of the proposed scheme.</description><identifier>ISSN: 1687-1499</identifier><identifier>ISSN: 1687-1472</identifier><identifier>EISSN: 1687-1499</identifier><identifier>DOI: 10.1186/s13638-021-02027-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Adaptive sampling ; Artificial neural networks ; Communications Engineering ; Communications networks ; Energy detector ; Engineering ; Evolutional Trends of Intelligent IoT in 5G Era ; Experiments ; False alarms ; Information Systems Applications (incl.Internet) ; Internet of Things ; Networks ; Sensors ; Signal to noise ratio ; Signal,Image and Speech Processing ; Simulation ; Spectrum allocation ; Spectrum sensing ; Wireless communications ; Wireless networks</subject><ispartof>EURASIP journal on wireless communications and networking, 2021-07, Vol.2021 (1), p.1-17, Article 156</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-901aa1dee9ec7e59a57b74e86fc113f8302458f329c4b110d3880c6e0ba134673</cites><orcidid>0000-0003-2560-4364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2551417365/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2551417365?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Miao, Jiawu</creatorcontrib><creatorcontrib>Tan, Youheng</creatorcontrib><creatorcontrib>Zhang, Yangying</creatorcontrib><creatorcontrib>Li, Yuebo</creatorcontrib><creatorcontrib>Mu, Junsheng</creatorcontrib><creatorcontrib>Jing, Xiaojun</creatorcontrib><title>Spectrum sensing based on adaptive sampling of received signal</title><title>EURASIP journal on wireless communications and networking</title><addtitle>J Wireless Com Network</addtitle><description>Spectrum sensing (SS) has been heatedly discussed due to its capacity to discover the idle registered spectrum bands, which effectively alleviates the shortage of spectrum by spectrum reuse. Energy detector (ED) is widely accepted for SS as its complexity is very low. In this paper, an adaptive sampling scheme is proposed to improve the sensing performance of ED, where the sampling point of the received signal is adaptively adjusted with the environment signal-to-noise ratio (SNR). When SNR decreases, the sensing performance can be maintained and even improved by the rise of the sampling point. When SNR increases, the improved ED is considered for idle spectrum detection. The SNR is evaluated based on the joint of convolutional neural network (CNN) and long short-term memory (LSTM) network. Both theoretical derivations and simulation experiments validate the effectiveness of the proposed scheme.</description><subject>Accuracy</subject><subject>Adaptive sampling</subject><subject>Artificial neural networks</subject><subject>Communications Engineering</subject><subject>Communications networks</subject><subject>Energy detector</subject><subject>Engineering</subject><subject>Evolutional Trends of Intelligent IoT in 5G Era</subject><subject>Experiments</subject><subject>False alarms</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Internet of Things</subject><subject>Networks</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Signal,Image and Speech Processing</subject><subject>Simulation</subject><subject>Spectrum allocation</subject><subject>Spectrum sensing</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1687-1499</issn><issn>1687-1472</issn><issn>1687-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UE1LxDAQLaLguvoHPBU8VzOdtEkugix-LCx4UM8hTaelS7etSdfFf292K-rJwzDDm_feMC-KLoFdA8j8xgPmKBOWQiiWimR3FM0glyIBrtTxn_k0OvN-zRgiV-ksun0ZyI5uu4k9db7p6rgwnsq472JTmmFsPij2ZjO0-1VfxY4sBayMfVN3pj2PTirTerr47vPo7eH-dfGUrJ4fl4u7VWJRsjFRDIyBkkiRFZQpk4lCcJJ5ZQGwkshSnskKU2V5AcBKlJLZnFhhAHkucB4tJ9-yN2s9uGZj3KfuTaMPQO9qbdzY2JY0ljkyCapUrOCYGWUJEYkbsEyERfC6mrwG179vyY963W9deMbrNMuAg8A8C6x0YlnXe--o-rkKTO8z11PmOmSuD5nrXRDhJPKB3NXkfq3_UX0BiBKC7A</recordid><startdate>20210714</startdate><enddate>20210714</enddate><creator>Miao, Jiawu</creator><creator>Tan, Youheng</creator><creator>Zhang, Yangying</creator><creator>Li, Yuebo</creator><creator>Mu, Junsheng</creator><creator>Jing, Xiaojun</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2560-4364</orcidid></search><sort><creationdate>20210714</creationdate><title>Spectrum sensing based on adaptive sampling of received signal</title><author>Miao, Jiawu ; Tan, Youheng ; Zhang, Yangying ; Li, Yuebo ; Mu, Junsheng ; Jing, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-901aa1dee9ec7e59a57b74e86fc113f8302458f329c4b110d3880c6e0ba134673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adaptive sampling</topic><topic>Artificial neural networks</topic><topic>Communications Engineering</topic><topic>Communications networks</topic><topic>Energy detector</topic><topic>Engineering</topic><topic>Evolutional Trends of Intelligent IoT in 5G Era</topic><topic>Experiments</topic><topic>False alarms</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Internet of Things</topic><topic>Networks</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Signal,Image and Speech Processing</topic><topic>Simulation</topic><topic>Spectrum allocation</topic><topic>Spectrum sensing</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Jiawu</creatorcontrib><creatorcontrib>Tan, Youheng</creatorcontrib><creatorcontrib>Zhang, Yangying</creatorcontrib><creatorcontrib>Li, Yuebo</creatorcontrib><creatorcontrib>Mu, Junsheng</creatorcontrib><creatorcontrib>Jing, Xiaojun</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>EURASIP journal on wireless communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Jiawu</au><au>Tan, Youheng</au><au>Zhang, Yangying</au><au>Li, Yuebo</au><au>Mu, Junsheng</au><au>Jing, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrum sensing based on adaptive sampling of received signal</atitle><jtitle>EURASIP journal on wireless communications and networking</jtitle><stitle>J Wireless Com Network</stitle><date>2021-07-14</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>156</artnum><issn>1687-1499</issn><issn>1687-1472</issn><eissn>1687-1499</eissn><abstract>Spectrum sensing (SS) has been heatedly discussed due to its capacity to discover the idle registered spectrum bands, which effectively alleviates the shortage of spectrum by spectrum reuse. Energy detector (ED) is widely accepted for SS as its complexity is very low. In this paper, an adaptive sampling scheme is proposed to improve the sensing performance of ED, where the sampling point of the received signal is adaptively adjusted with the environment signal-to-noise ratio (SNR). When SNR decreases, the sensing performance can be maintained and even improved by the rise of the sampling point. When SNR increases, the improved ED is considered for idle spectrum detection. The SNR is evaluated based on the joint of convolutional neural network (CNN) and long short-term memory (LSTM) network. Both theoretical derivations and simulation experiments validate the effectiveness of the proposed scheme.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13638-021-02027-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2560-4364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1499 |
ispartof | EURASIP journal on wireless communications and networking, 2021-07, Vol.2021 (1), p.1-17, Article 156 |
issn | 1687-1499 1687-1472 1687-1499 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3d630819d90b435a9ce333e4a1c07081 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Accuracy Adaptive sampling Artificial neural networks Communications Engineering Communications networks Energy detector Engineering Evolutional Trends of Intelligent IoT in 5G Era Experiments False alarms Information Systems Applications (incl.Internet) Internet of Things Networks Sensors Signal to noise ratio Signal,Image and Speech Processing Simulation Spectrum allocation Spectrum sensing Wireless communications Wireless networks |
title | Spectrum sensing based on adaptive sampling of received signal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrum%20sensing%20based%20on%20adaptive%20sampling%20of%20received%20signal&rft.jtitle=EURASIP%20journal%20on%20wireless%20communications%20and%20networking&rft.au=Miao,%20Jiawu&rft.date=2021-07-14&rft.volume=2021&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=156&rft.issn=1687-1499&rft.eissn=1687-1499&rft_id=info:doi/10.1186/s13638-021-02027-w&rft_dat=%3Cproquest_doaj_%3E2551417365%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-901aa1dee9ec7e59a57b74e86fc113f8302458f329c4b110d3880c6e0ba134673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551417365&rft_id=info:pmid/&rfr_iscdi=true |