Loading…
Evacuation based on spatio-temporal resilience with variable traffic demand
The efficient evacuation of people from dangerous areas is a key objective of emergency management. However, many emergencies give little to no advanced warning, leading to spontaneous evacuation with no time for planning or management. For large emergencies, destinations become less certain, with t...
Saved in:
Published in: | Journal of management science and engineering (Online) 2021-03, Vol.6 (1), p.86-98 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3 |
container_end_page | 98 |
container_issue | 1 |
container_start_page | 86 |
container_title | Journal of management science and engineering (Online) |
container_volume | 6 |
creator | Zhang, Zhao Liu, Yanyue Tong, Qingfeng Guo, Shengmin Li, Daqing |
description | The efficient evacuation of people from dangerous areas is a key objective of emergency management. However, many emergencies give little to no advanced warning, leading to spontaneous evacuation with no time for planning or management. For large emergencies, destinations become less certain, with traffic demand imbalanced and concentrated on a few oversaturated routes familiar to evacuees. Ultimately, this leads to rapid congestion and delay on some routes, while others remain barely used, extending clearance times with an accumulating population at risk. In this study we address these issues through incorporating spatio-temporal traffic resilience dynamics into a destination choice model utilizing the available capacity of the overall network. We validate our model through a post-concert egress event. The results suggest that our method can reduce total egress times and average travel time by 20%–43% over the no-guidance condition. Our method can be used to estimate and quantify emergency conditions to optimally guide destinations and routing choice for evacuees and/or autonomously moving vehicles during evacuations. |
doi_str_mv | 10.1016/j.jmse.2021.02.009 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3d693d78e2ef4ca4b53fcd9ff441bac5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2096232021000111</els_id><doaj_id>oai_doaj_org_article_3d693d78e2ef4ca4b53fcd9ff441bac5</doaj_id><sourcerecordid>S2096232021000111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWGr_gKf8gcT9Tha8SKlaFLzoeZnszuqGpCm7seK_N2nFo6d5GXgfZp4su6akpISqm7Zs-4QlI4yWhJWE6LNswWStCyk5O58y0apgnJHLbJVSSwhhtVS14ovsaXMA-wljGHZ5AwldPoW0nxfFiP1-iNDlEVPoAu4s5l9h_MgPEAM0HeZjBO-DzR32sHNX2YWHLuHqdy6zt_vN6_qxeH552K7vngsrVDUWXMqa1rayTYWCaMHB80YppV0laM0s943VQhBWAeOOaq25ZspTRziHGh1fZtsT1w3Qmn0MPcRvM0Awx8UQ3w3EMdgODXdKc1fVyNALC6KR3FunvReCNmDlxGInlo1DShH9H48SM9s1rZntmtmuIcxMdqfS7amE05eHgNEke9TjQkQ7TmeE_-o_YdyDPg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evacuation based on spatio-temporal resilience with variable traffic demand</title><source>ScienceDirect®</source><creator>Zhang, Zhao ; Liu, Yanyue ; Tong, Qingfeng ; Guo, Shengmin ; Li, Daqing</creator><creatorcontrib>Zhang, Zhao ; Liu, Yanyue ; Tong, Qingfeng ; Guo, Shengmin ; Li, Daqing</creatorcontrib><description>The efficient evacuation of people from dangerous areas is a key objective of emergency management. However, many emergencies give little to no advanced warning, leading to spontaneous evacuation with no time for planning or management. For large emergencies, destinations become less certain, with traffic demand imbalanced and concentrated on a few oversaturated routes familiar to evacuees. Ultimately, this leads to rapid congestion and delay on some routes, while others remain barely used, extending clearance times with an accumulating population at risk. In this study we address these issues through incorporating spatio-temporal traffic resilience dynamics into a destination choice model utilizing the available capacity of the overall network. We validate our model through a post-concert egress event. The results suggest that our method can reduce total egress times and average travel time by 20%–43% over the no-guidance condition. Our method can be used to estimate and quantify emergency conditions to optimally guide destinations and routing choice for evacuees and/or autonomously moving vehicles during evacuations.</description><identifier>ISSN: 2096-2320</identifier><identifier>EISSN: 2589-5532</identifier><identifier>DOI: 10.1016/j.jmse.2021.02.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Destination choice model ; Emergency evacuation ; Fundamental diagram ; Resilience</subject><ispartof>Journal of management science and engineering (Online), 2021-03, Vol.6 (1), p.86-98</ispartof><rights>2021 China Science Publishing & Media Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3</citedby><cites>FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2096232021000111$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Liu, Yanyue</creatorcontrib><creatorcontrib>Tong, Qingfeng</creatorcontrib><creatorcontrib>Guo, Shengmin</creatorcontrib><creatorcontrib>Li, Daqing</creatorcontrib><title>Evacuation based on spatio-temporal resilience with variable traffic demand</title><title>Journal of management science and engineering (Online)</title><description>The efficient evacuation of people from dangerous areas is a key objective of emergency management. However, many emergencies give little to no advanced warning, leading to spontaneous evacuation with no time for planning or management. For large emergencies, destinations become less certain, with traffic demand imbalanced and concentrated on a few oversaturated routes familiar to evacuees. Ultimately, this leads to rapid congestion and delay on some routes, while others remain barely used, extending clearance times with an accumulating population at risk. In this study we address these issues through incorporating spatio-temporal traffic resilience dynamics into a destination choice model utilizing the available capacity of the overall network. We validate our model through a post-concert egress event. The results suggest that our method can reduce total egress times and average travel time by 20%–43% over the no-guidance condition. Our method can be used to estimate and quantify emergency conditions to optimally guide destinations and routing choice for evacuees and/or autonomously moving vehicles during evacuations.</description><subject>Destination choice model</subject><subject>Emergency evacuation</subject><subject>Fundamental diagram</subject><subject>Resilience</subject><issn>2096-2320</issn><issn>2589-5532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1Lw0AQhoMoWGr_gKf8gcT9Tha8SKlaFLzoeZnszuqGpCm7seK_N2nFo6d5GXgfZp4su6akpISqm7Zs-4QlI4yWhJWE6LNswWStCyk5O58y0apgnJHLbJVSSwhhtVS14ovsaXMA-wljGHZ5AwldPoW0nxfFiP1-iNDlEVPoAu4s5l9h_MgPEAM0HeZjBO-DzR32sHNX2YWHLuHqdy6zt_vN6_qxeH552K7vngsrVDUWXMqa1rayTYWCaMHB80YppV0laM0s943VQhBWAeOOaq25ZspTRziHGh1fZtsT1w3Qmn0MPcRvM0Awx8UQ3w3EMdgODXdKc1fVyNALC6KR3FunvReCNmDlxGInlo1DShH9H48SM9s1rZntmtmuIcxMdqfS7amE05eHgNEke9TjQkQ7TmeE_-o_YdyDPg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Zhao</creator><creator>Liu, Yanyue</creator><creator>Tong, Qingfeng</creator><creator>Guo, Shengmin</creator><creator>Li, Daqing</creator><general>Elsevier B.V</general><general>KeAi Communications Co., Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20210301</creationdate><title>Evacuation based on spatio-temporal resilience with variable traffic demand</title><author>Zhang, Zhao ; Liu, Yanyue ; Tong, Qingfeng ; Guo, Shengmin ; Li, Daqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Destination choice model</topic><topic>Emergency evacuation</topic><topic>Fundamental diagram</topic><topic>Resilience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Liu, Yanyue</creatorcontrib><creatorcontrib>Tong, Qingfeng</creatorcontrib><creatorcontrib>Guo, Shengmin</creatorcontrib><creatorcontrib>Li, Daqing</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of management science and engineering (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhao</au><au>Liu, Yanyue</au><au>Tong, Qingfeng</au><au>Guo, Shengmin</au><au>Li, Daqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evacuation based on spatio-temporal resilience with variable traffic demand</atitle><jtitle>Journal of management science and engineering (Online)</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>86</spage><epage>98</epage><pages>86-98</pages><issn>2096-2320</issn><eissn>2589-5532</eissn><abstract>The efficient evacuation of people from dangerous areas is a key objective of emergency management. However, many emergencies give little to no advanced warning, leading to spontaneous evacuation with no time for planning or management. For large emergencies, destinations become less certain, with traffic demand imbalanced and concentrated on a few oversaturated routes familiar to evacuees. Ultimately, this leads to rapid congestion and delay on some routes, while others remain barely used, extending clearance times with an accumulating population at risk. In this study we address these issues through incorporating spatio-temporal traffic resilience dynamics into a destination choice model utilizing the available capacity of the overall network. We validate our model through a post-concert egress event. The results suggest that our method can reduce total egress times and average travel time by 20%–43% over the no-guidance condition. Our method can be used to estimate and quantify emergency conditions to optimally guide destinations and routing choice for evacuees and/or autonomously moving vehicles during evacuations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmse.2021.02.009</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2096-2320 |
ispartof | Journal of management science and engineering (Online), 2021-03, Vol.6 (1), p.86-98 |
issn | 2096-2320 2589-5532 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3d693d78e2ef4ca4b53fcd9ff441bac5 |
source | ScienceDirect® |
subjects | Destination choice model Emergency evacuation Fundamental diagram Resilience |
title | Evacuation based on spatio-temporal resilience with variable traffic demand |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evacuation%20based%20on%20spatio-temporal%20resilience%20with%20variable%20traffic%20demand&rft.jtitle=Journal%20of%20management%20science%20and%20engineering%20(Online)&rft.au=Zhang,%20Zhao&rft.date=2021-03-01&rft.volume=6&rft.issue=1&rft.spage=86&rft.epage=98&rft.pages=86-98&rft.issn=2096-2320&rft.eissn=2589-5532&rft_id=info:doi/10.1016/j.jmse.2021.02.009&rft_dat=%3Celsevier_doaj_%3ES2096232021000111%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |