Loading…

Evacuation based on spatio-temporal resilience with variable traffic demand

The efficient evacuation of people from dangerous areas is a key objective of emergency management. However, many emergencies give little to no advanced warning, leading to spontaneous evacuation with no time for planning or management. For large emergencies, destinations become less certain, with t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of management science and engineering (Online) 2021-03, Vol.6 (1), p.86-98
Main Authors: Zhang, Zhao, Liu, Yanyue, Tong, Qingfeng, Guo, Shengmin, Li, Daqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3
cites cdi_FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3
container_end_page 98
container_issue 1
container_start_page 86
container_title Journal of management science and engineering (Online)
container_volume 6
creator Zhang, Zhao
Liu, Yanyue
Tong, Qingfeng
Guo, Shengmin
Li, Daqing
description The efficient evacuation of people from dangerous areas is a key objective of emergency management. However, many emergencies give little to no advanced warning, leading to spontaneous evacuation with no time for planning or management. For large emergencies, destinations become less certain, with traffic demand imbalanced and concentrated on a few oversaturated routes familiar to evacuees. Ultimately, this leads to rapid congestion and delay on some routes, while others remain barely used, extending clearance times with an accumulating population at risk. In this study we address these issues through incorporating spatio-temporal traffic resilience dynamics into a destination choice model utilizing the available capacity of the overall network. We validate our model through a post-concert egress event. The results suggest that our method can reduce total egress times and average travel time by 20%–43% over the no-guidance condition. Our method can be used to estimate and quantify emergency conditions to optimally guide destinations and routing choice for evacuees and/or autonomously moving vehicles during evacuations.
doi_str_mv 10.1016/j.jmse.2021.02.009
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3d693d78e2ef4ca4b53fcd9ff441bac5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2096232021000111</els_id><doaj_id>oai_doaj_org_article_3d693d78e2ef4ca4b53fcd9ff441bac5</doaj_id><sourcerecordid>S2096232021000111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWGr_gKf8gcT9Tha8SKlaFLzoeZnszuqGpCm7seK_N2nFo6d5GXgfZp4su6akpISqm7Zs-4QlI4yWhJWE6LNswWStCyk5O58y0apgnJHLbJVSSwhhtVS14ovsaXMA-wljGHZ5AwldPoW0nxfFiP1-iNDlEVPoAu4s5l9h_MgPEAM0HeZjBO-DzR32sHNX2YWHLuHqdy6zt_vN6_qxeH552K7vngsrVDUWXMqa1rayTYWCaMHB80YppV0laM0s943VQhBWAeOOaq25ZspTRziHGh1fZtsT1w3Qmn0MPcRvM0Awx8UQ3w3EMdgODXdKc1fVyNALC6KR3FunvReCNmDlxGInlo1DShH9H48SM9s1rZntmtmuIcxMdqfS7amE05eHgNEke9TjQkQ7TmeE_-o_YdyDPg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evacuation based on spatio-temporal resilience with variable traffic demand</title><source>ScienceDirect®</source><creator>Zhang, Zhao ; Liu, Yanyue ; Tong, Qingfeng ; Guo, Shengmin ; Li, Daqing</creator><creatorcontrib>Zhang, Zhao ; Liu, Yanyue ; Tong, Qingfeng ; Guo, Shengmin ; Li, Daqing</creatorcontrib><description>The efficient evacuation of people from dangerous areas is a key objective of emergency management. However, many emergencies give little to no advanced warning, leading to spontaneous evacuation with no time for planning or management. For large emergencies, destinations become less certain, with traffic demand imbalanced and concentrated on a few oversaturated routes familiar to evacuees. Ultimately, this leads to rapid congestion and delay on some routes, while others remain barely used, extending clearance times with an accumulating population at risk. In this study we address these issues through incorporating spatio-temporal traffic resilience dynamics into a destination choice model utilizing the available capacity of the overall network. We validate our model through a post-concert egress event. The results suggest that our method can reduce total egress times and average travel time by 20%–43% over the no-guidance condition. Our method can be used to estimate and quantify emergency conditions to optimally guide destinations and routing choice for evacuees and/or autonomously moving vehicles during evacuations.</description><identifier>ISSN: 2096-2320</identifier><identifier>EISSN: 2589-5532</identifier><identifier>DOI: 10.1016/j.jmse.2021.02.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Destination choice model ; Emergency evacuation ; Fundamental diagram ; Resilience</subject><ispartof>Journal of management science and engineering (Online), 2021-03, Vol.6 (1), p.86-98</ispartof><rights>2021 China Science Publishing &amp; Media Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3</citedby><cites>FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2096232021000111$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Liu, Yanyue</creatorcontrib><creatorcontrib>Tong, Qingfeng</creatorcontrib><creatorcontrib>Guo, Shengmin</creatorcontrib><creatorcontrib>Li, Daqing</creatorcontrib><title>Evacuation based on spatio-temporal resilience with variable traffic demand</title><title>Journal of management science and engineering (Online)</title><description>The efficient evacuation of people from dangerous areas is a key objective of emergency management. However, many emergencies give little to no advanced warning, leading to spontaneous evacuation with no time for planning or management. For large emergencies, destinations become less certain, with traffic demand imbalanced and concentrated on a few oversaturated routes familiar to evacuees. Ultimately, this leads to rapid congestion and delay on some routes, while others remain barely used, extending clearance times with an accumulating population at risk. In this study we address these issues through incorporating spatio-temporal traffic resilience dynamics into a destination choice model utilizing the available capacity of the overall network. We validate our model through a post-concert egress event. The results suggest that our method can reduce total egress times and average travel time by 20%–43% over the no-guidance condition. Our method can be used to estimate and quantify emergency conditions to optimally guide destinations and routing choice for evacuees and/or autonomously moving vehicles during evacuations.</description><subject>Destination choice model</subject><subject>Emergency evacuation</subject><subject>Fundamental diagram</subject><subject>Resilience</subject><issn>2096-2320</issn><issn>2589-5532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1Lw0AQhoMoWGr_gKf8gcT9Tha8SKlaFLzoeZnszuqGpCm7seK_N2nFo6d5GXgfZp4su6akpISqm7Zs-4QlI4yWhJWE6LNswWStCyk5O58y0apgnJHLbJVSSwhhtVS14ovsaXMA-wljGHZ5AwldPoW0nxfFiP1-iNDlEVPoAu4s5l9h_MgPEAM0HeZjBO-DzR32sHNX2YWHLuHqdy6zt_vN6_qxeH552K7vngsrVDUWXMqa1rayTYWCaMHB80YppV0laM0s943VQhBWAeOOaq25ZspTRziHGh1fZtsT1w3Qmn0MPcRvM0Awx8UQ3w3EMdgODXdKc1fVyNALC6KR3FunvReCNmDlxGInlo1DShH9H48SM9s1rZntmtmuIcxMdqfS7amE05eHgNEke9TjQkQ7TmeE_-o_YdyDPg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Zhao</creator><creator>Liu, Yanyue</creator><creator>Tong, Qingfeng</creator><creator>Guo, Shengmin</creator><creator>Li, Daqing</creator><general>Elsevier B.V</general><general>KeAi Communications Co., Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20210301</creationdate><title>Evacuation based on spatio-temporal resilience with variable traffic demand</title><author>Zhang, Zhao ; Liu, Yanyue ; Tong, Qingfeng ; Guo, Shengmin ; Li, Daqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Destination choice model</topic><topic>Emergency evacuation</topic><topic>Fundamental diagram</topic><topic>Resilience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Liu, Yanyue</creatorcontrib><creatorcontrib>Tong, Qingfeng</creatorcontrib><creatorcontrib>Guo, Shengmin</creatorcontrib><creatorcontrib>Li, Daqing</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of management science and engineering (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhao</au><au>Liu, Yanyue</au><au>Tong, Qingfeng</au><au>Guo, Shengmin</au><au>Li, Daqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evacuation based on spatio-temporal resilience with variable traffic demand</atitle><jtitle>Journal of management science and engineering (Online)</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>86</spage><epage>98</epage><pages>86-98</pages><issn>2096-2320</issn><eissn>2589-5532</eissn><abstract>The efficient evacuation of people from dangerous areas is a key objective of emergency management. However, many emergencies give little to no advanced warning, leading to spontaneous evacuation with no time for planning or management. For large emergencies, destinations become less certain, with traffic demand imbalanced and concentrated on a few oversaturated routes familiar to evacuees. Ultimately, this leads to rapid congestion and delay on some routes, while others remain barely used, extending clearance times with an accumulating population at risk. In this study we address these issues through incorporating spatio-temporal traffic resilience dynamics into a destination choice model utilizing the available capacity of the overall network. We validate our model through a post-concert egress event. The results suggest that our method can reduce total egress times and average travel time by 20%–43% over the no-guidance condition. Our method can be used to estimate and quantify emergency conditions to optimally guide destinations and routing choice for evacuees and/or autonomously moving vehicles during evacuations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmse.2021.02.009</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2096-2320
ispartof Journal of management science and engineering (Online), 2021-03, Vol.6 (1), p.86-98
issn 2096-2320
2589-5532
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3d693d78e2ef4ca4b53fcd9ff441bac5
source ScienceDirect®
subjects Destination choice model
Emergency evacuation
Fundamental diagram
Resilience
title Evacuation based on spatio-temporal resilience with variable traffic demand
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evacuation%20based%20on%20spatio-temporal%20resilience%20with%20variable%20traffic%20demand&rft.jtitle=Journal%20of%20management%20science%20and%20engineering%20(Online)&rft.au=Zhang,%20Zhao&rft.date=2021-03-01&rft.volume=6&rft.issue=1&rft.spage=86&rft.epage=98&rft.pages=86-98&rft.issn=2096-2320&rft.eissn=2589-5532&rft_id=info:doi/10.1016/j.jmse.2021.02.009&rft_dat=%3Celsevier_doaj_%3ES2096232021000111%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-355818c7cb7e40943af3b6669d74182c3fbc944027a23d19993926f1d033a8ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true