Loading…
Building block 3D printing based on molecular self-assembly monolayer with self-healing properties
The spontaneous formation of biological substances, such as human organs, are governed by different stimuli driven by complex 3D self-organization protocols at the molecular level. The fundamentals of such molecular self-assembly processes are critical for fabrication of advanced technological compo...
Saved in:
Published in: | Scientific reports 2022-04, Vol.12 (1), p.6806-6806, Article 6806 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The spontaneous formation of biological substances, such as human organs, are governed by different stimuli driven by complex 3D self-organization protocols at the molecular level. The fundamentals of such molecular self-assembly processes are critical for fabrication of advanced technological components in nature. We propose and experimentally demonstrate a promising 3D printing method with self-healing property based on molecular self-assembly-monolayer principles, which is conceptually different than the existing 3D printing protocols. The proposed molecular building-block approach uses metal ion-mediated continuous self-assembly of organic molecular at liquid–liquid interfaces to create 2D and 3D structures. Using this technique, we directly printed nanosheets and 3D rods using dithiol molecules as building block units. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-10875-9 |