Loading…

Advances in Nanodynamic Therapy for Cancer Treatment

Nanodynamic therapy (NDT) exerts its anti-tumor effect by activating nanosensitizers to generate large amounts of reactive oxygen species (ROS) in tumor cells. NDT enhances tumor-specific targeting and selectivity by leveraging the tumor microenvironment (TME) and mechanisms that boost anti-tumor im...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2024-04, Vol.14 (7), p.648
Main Authors: Zhang, Bingchang, Huang, Yan, Huang, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanodynamic therapy (NDT) exerts its anti-tumor effect by activating nanosensitizers to generate large amounts of reactive oxygen species (ROS) in tumor cells. NDT enhances tumor-specific targeting and selectivity by leveraging the tumor microenvironment (TME) and mechanisms that boost anti-tumor immune responses. It also minimizes damage to surrounding healthy tissues and enhances cytotoxicity in tumor cells, showing promise in cancer treatment, with significant potential. This review covers the research progress in five major nanodynamic therapies: photodynamic therapy (PDT), electrodynamic therapy (EDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT), and chemodynamic therapy (CDT), emphasizing the significant role of advanced nanotechnology in the development of NDT for anti-tumor purposes. The mechanisms, effects, and challenges faced by these NDTs are discussed, along with their respective solutions for enhancing anti-tumor efficacy, such as pH response, oxygen delivery, and combined immunotherapy. Finally, this review briefly addresses challenges in the clinical translation of NDT.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano14070648