Loading…
Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis
Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an allo...
Saved in:
Published in: | Nature communications 2024-04, Vol.15 (1), p.3131-3131, Article 3131 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3 |
container_end_page | 3131 |
container_issue | 1 |
container_start_page | 3131 |
container_title | Nature communications |
container_volume | 15 |
creator | Li, Shuang Yang, Hongtao Qu, Xinhua Qin, Yu Liu, Aobo Bao, Guo Huang, He Sun, Chaoyang Dai, Jiabao Tan, Junlong Shi, Jiahui Guan, Yan Pan, Wei Gu, Xuenan Jia, Bo Wen, Peng Wang, Xiaogang Zheng, Yufeng |
description | Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn
4
and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of
Il-4
,
Il-10
, subsequently promoting osteogenesis.
Rapid degradation inducing overdose toxicity remains challenging in porous biodegradable bone scaffolds. Here the authors present multiscale architecture design on ZnLi scaffolds with 90% porosity orchestrates immune responses and subsequent bone regeneration. |
doi_str_mv | 10.1038/s41467-024-47189-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3d8cdffcf4b14e5ab8161159fa59df4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3d8cdffcf4b14e5ab8161159fa59df4b</doaj_id><sourcerecordid>3038428777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3</originalsourceid><addsrcrecordid>eNp9kc1u3SAQRq2qVRMleYEuKqRuunEKBgwsq_QnkVJl02yyQWMYXF_Z5hbsSHn7cuM0rbooG9DozAfDqao3jJ4zyvWHLJhoVU0bUQvFtKnli-q4oYLVTDX85V_no-os5x0tixumhXhdHXHdUklZc1zdf1vHZcgORiSQ3I9hQbesCYnHPPQziYHwT2SfhnlBT7oheuwTeOgKfzfXHeRS3scU10xKSghx9JmEmMgwTescp-jXEZaYHkjMC8Ye5xKcT6tXAcaMZ0_7SXX75fP3i8v6-ubr1cXH69oJLZeaceqBK6aoa00HVDVtQBC8A6-axgELwvvOUIkAMjgpgnYoS1dgnBlEflJdbbk-ws6WMSZIDzbCYB8LMfUW0jK4ES332vkQXBAdEyih06xlTJoA0vhSLFnvt6x9ij9XzIudysfhOMKMZXzLixbRaKVUQd_9g-7imuYy6YFSzGhqTKGajXIp5pwwPD-QUXuQbDfJtki2j5KtLE1vn6LXbkL_3PJbaQH4BuSDtR7Tn7v_E_sLEyq0XA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037198099</pqid></control><display><type>article</type><title>Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Shuang ; Yang, Hongtao ; Qu, Xinhua ; Qin, Yu ; Liu, Aobo ; Bao, Guo ; Huang, He ; Sun, Chaoyang ; Dai, Jiabao ; Tan, Junlong ; Shi, Jiahui ; Guan, Yan ; Pan, Wei ; Gu, Xuenan ; Jia, Bo ; Wen, Peng ; Wang, Xiaogang ; Zheng, Yufeng</creator><creatorcontrib>Li, Shuang ; Yang, Hongtao ; Qu, Xinhua ; Qin, Yu ; Liu, Aobo ; Bao, Guo ; Huang, He ; Sun, Chaoyang ; Dai, Jiabao ; Tan, Junlong ; Shi, Jiahui ; Guan, Yan ; Pan, Wei ; Gu, Xuenan ; Jia, Bo ; Wen, Peng ; Wang, Xiaogang ; Zheng, Yufeng</creatorcontrib><description>Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn
4
and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of
Il-4
,
Il-10
, subsequently promoting osteogenesis.
Rapid degradation inducing overdose toxicity remains challenging in porous biodegradable bone scaffolds. Here the authors present multiscale architecture design on ZnLi scaffolds with 90% porosity orchestrates immune responses and subsequent bone regeneration.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-47189-5</identifier><identifier>PMID: 38605012</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/51 ; 14/19 ; 147/135 ; 147/3 ; 631/61/54/990 ; 639/301/54/993 ; Biocompatibility ; Biodegradability ; Biodegradable materials ; Biodegradation ; Bone growth ; Degradation ; Eutectoids ; Filopodia ; Humanities and Social Sciences ; Immune response ; Immunomodulation ; Inflammation ; Lamellar structure ; Macrophages ; Minimal surfaces ; multidisciplinary ; Osteogenesis ; Overdose ; Phenotypes ; Porosity ; Porous materials ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Science ; Science (multidisciplinary) ; Three dimensional printing ; Toxicity ; Transcriptomics ; Zinc</subject><ispartof>Nature communications, 2024-04, Vol.15 (1), p.3131-3131, Article 3131</ispartof><rights>The Author(s) 2024. corrected publication 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3</citedby><cites>FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3</cites><orcidid>0000-0003-2802-4795 ; 0000-0001-9798-834X ; 0000-0002-5656-1988 ; 0000-0002-7402-9979 ; 0000-0002-4809-6457 ; 0000-0002-0495-1554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3037198099/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3037198099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38605012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Yang, Hongtao</creatorcontrib><creatorcontrib>Qu, Xinhua</creatorcontrib><creatorcontrib>Qin, Yu</creatorcontrib><creatorcontrib>Liu, Aobo</creatorcontrib><creatorcontrib>Bao, Guo</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><creatorcontrib>Sun, Chaoyang</creatorcontrib><creatorcontrib>Dai, Jiabao</creatorcontrib><creatorcontrib>Tan, Junlong</creatorcontrib><creatorcontrib>Shi, Jiahui</creatorcontrib><creatorcontrib>Guan, Yan</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Gu, Xuenan</creatorcontrib><creatorcontrib>Jia, Bo</creatorcontrib><creatorcontrib>Wen, Peng</creatorcontrib><creatorcontrib>Wang, Xiaogang</creatorcontrib><creatorcontrib>Zheng, Yufeng</creatorcontrib><title>Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn
4
and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of
Il-4
,
Il-10
, subsequently promoting osteogenesis.
Rapid degradation inducing overdose toxicity remains challenging in porous biodegradable bone scaffolds. Here the authors present multiscale architecture design on ZnLi scaffolds with 90% porosity orchestrates immune responses and subsequent bone regeneration.</description><subject>13/1</subject><subject>13/51</subject><subject>14/19</subject><subject>147/135</subject><subject>147/3</subject><subject>631/61/54/990</subject><subject>639/301/54/993</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradable materials</subject><subject>Biodegradation</subject><subject>Bone growth</subject><subject>Degradation</subject><subject>Eutectoids</subject><subject>Filopodia</subject><subject>Humanities and Social Sciences</subject><subject>Immune response</subject><subject>Immunomodulation</subject><subject>Inflammation</subject><subject>Lamellar structure</subject><subject>Macrophages</subject><subject>Minimal surfaces</subject><subject>multidisciplinary</subject><subject>Osteogenesis</subject><subject>Overdose</subject><subject>Phenotypes</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Three dimensional printing</subject><subject>Toxicity</subject><subject>Transcriptomics</subject><subject>Zinc</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u3SAQRq2qVRMleYEuKqRuunEKBgwsq_QnkVJl02yyQWMYXF_Z5hbsSHn7cuM0rbooG9DozAfDqao3jJ4zyvWHLJhoVU0bUQvFtKnli-q4oYLVTDX85V_no-os5x0tixumhXhdHXHdUklZc1zdf1vHZcgORiSQ3I9hQbesCYnHPPQziYHwT2SfhnlBT7oheuwTeOgKfzfXHeRS3scU10xKSghx9JmEmMgwTescp-jXEZaYHkjMC8Ye5xKcT6tXAcaMZ0_7SXX75fP3i8v6-ubr1cXH69oJLZeaceqBK6aoa00HVDVtQBC8A6-axgELwvvOUIkAMjgpgnYoS1dgnBlEflJdbbk-ws6WMSZIDzbCYB8LMfUW0jK4ES332vkQXBAdEyih06xlTJoA0vhSLFnvt6x9ij9XzIudysfhOMKMZXzLixbRaKVUQd_9g-7imuYy6YFSzGhqTKGajXIp5pwwPD-QUXuQbDfJtki2j5KtLE1vn6LXbkL_3PJbaQH4BuSDtR7Tn7v_E_sLEyq0XA</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Li, Shuang</creator><creator>Yang, Hongtao</creator><creator>Qu, Xinhua</creator><creator>Qin, Yu</creator><creator>Liu, Aobo</creator><creator>Bao, Guo</creator><creator>Huang, He</creator><creator>Sun, Chaoyang</creator><creator>Dai, Jiabao</creator><creator>Tan, Junlong</creator><creator>Shi, Jiahui</creator><creator>Guan, Yan</creator><creator>Pan, Wei</creator><creator>Gu, Xuenan</creator><creator>Jia, Bo</creator><creator>Wen, Peng</creator><creator>Wang, Xiaogang</creator><creator>Zheng, Yufeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2802-4795</orcidid><orcidid>https://orcid.org/0000-0001-9798-834X</orcidid><orcidid>https://orcid.org/0000-0002-5656-1988</orcidid><orcidid>https://orcid.org/0000-0002-7402-9979</orcidid><orcidid>https://orcid.org/0000-0002-4809-6457</orcidid><orcidid>https://orcid.org/0000-0002-0495-1554</orcidid></search><sort><creationdate>20240411</creationdate><title>Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis</title><author>Li, Shuang ; Yang, Hongtao ; Qu, Xinhua ; Qin, Yu ; Liu, Aobo ; Bao, Guo ; Huang, He ; Sun, Chaoyang ; Dai, Jiabao ; Tan, Junlong ; Shi, Jiahui ; Guan, Yan ; Pan, Wei ; Gu, Xuenan ; Jia, Bo ; Wen, Peng ; Wang, Xiaogang ; Zheng, Yufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/1</topic><topic>13/51</topic><topic>14/19</topic><topic>147/135</topic><topic>147/3</topic><topic>631/61/54/990</topic><topic>639/301/54/993</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradable materials</topic><topic>Biodegradation</topic><topic>Bone growth</topic><topic>Degradation</topic><topic>Eutectoids</topic><topic>Filopodia</topic><topic>Humanities and Social Sciences</topic><topic>Immune response</topic><topic>Immunomodulation</topic><topic>Inflammation</topic><topic>Lamellar structure</topic><topic>Macrophages</topic><topic>Minimal surfaces</topic><topic>multidisciplinary</topic><topic>Osteogenesis</topic><topic>Overdose</topic><topic>Phenotypes</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Three dimensional printing</topic><topic>Toxicity</topic><topic>Transcriptomics</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Yang, Hongtao</creatorcontrib><creatorcontrib>Qu, Xinhua</creatorcontrib><creatorcontrib>Qin, Yu</creatorcontrib><creatorcontrib>Liu, Aobo</creatorcontrib><creatorcontrib>Bao, Guo</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><creatorcontrib>Sun, Chaoyang</creatorcontrib><creatorcontrib>Dai, Jiabao</creatorcontrib><creatorcontrib>Tan, Junlong</creatorcontrib><creatorcontrib>Shi, Jiahui</creatorcontrib><creatorcontrib>Guan, Yan</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Gu, Xuenan</creatorcontrib><creatorcontrib>Jia, Bo</creatorcontrib><creatorcontrib>Wen, Peng</creatorcontrib><creatorcontrib>Wang, Xiaogang</creatorcontrib><creatorcontrib>Zheng, Yufeng</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuang</au><au>Yang, Hongtao</au><au>Qu, Xinhua</au><au>Qin, Yu</au><au>Liu, Aobo</au><au>Bao, Guo</au><au>Huang, He</au><au>Sun, Chaoyang</au><au>Dai, Jiabao</au><au>Tan, Junlong</au><au>Shi, Jiahui</au><au>Guan, Yan</au><au>Pan, Wei</au><au>Gu, Xuenan</au><au>Jia, Bo</au><au>Wen, Peng</au><au>Wang, Xiaogang</au><au>Zheng, Yufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-04-11</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>3131</spage><epage>3131</epage><pages>3131-3131</pages><artnum>3131</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn
4
and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of
Il-4
,
Il-10
, subsequently promoting osteogenesis.
Rapid degradation inducing overdose toxicity remains challenging in porous biodegradable bone scaffolds. Here the authors present multiscale architecture design on ZnLi scaffolds with 90% porosity orchestrates immune responses and subsequent bone regeneration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38605012</pmid><doi>10.1038/s41467-024-47189-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2802-4795</orcidid><orcidid>https://orcid.org/0000-0001-9798-834X</orcidid><orcidid>https://orcid.org/0000-0002-5656-1988</orcidid><orcidid>https://orcid.org/0000-0002-7402-9979</orcidid><orcidid>https://orcid.org/0000-0002-4809-6457</orcidid><orcidid>https://orcid.org/0000-0002-0495-1554</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-04, Vol.15 (1), p.3131-3131, Article 3131 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3d8cdffcf4b14e5ab8161159fa59df4b |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/51 14/19 147/135 147/3 631/61/54/990 639/301/54/993 Biocompatibility Biodegradability Biodegradable materials Biodegradation Bone growth Degradation Eutectoids Filopodia Humanities and Social Sciences Immune response Immunomodulation Inflammation Lamellar structure Macrophages Minimal surfaces multidisciplinary Osteogenesis Overdose Phenotypes Porosity Porous materials Regeneration Regeneration (physiology) Scaffolds Science Science (multidisciplinary) Three dimensional printing Toxicity Transcriptomics Zinc |
title | Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20architecture%20design%20of%203D%20printed%20biodegradable%20Zn-based%20porous%20scaffolds%20for%20immunomodulatory%20osteogenesis&rft.jtitle=Nature%20communications&rft.au=Li,%20Shuang&rft.date=2024-04-11&rft.volume=15&rft.issue=1&rft.spage=3131&rft.epage=3131&rft.pages=3131-3131&rft.artnum=3131&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-47189-5&rft_dat=%3Cproquest_doaj_%3E3038428777%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037198099&rft_id=info:pmid/38605012&rfr_iscdi=true |