Loading…

Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis

Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an allo...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-04, Vol.15 (1), p.3131-3131, Article 3131
Main Authors: Li, Shuang, Yang, Hongtao, Qu, Xinhua, Qin, Yu, Liu, Aobo, Bao, Guo, Huang, He, Sun, Chaoyang, Dai, Jiabao, Tan, Junlong, Shi, Jiahui, Guan, Yan, Pan, Wei, Gu, Xuenan, Jia, Bo, Wen, Peng, Wang, Xiaogang, Zheng, Yufeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3
cites cdi_FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3
container_end_page 3131
container_issue 1
container_start_page 3131
container_title Nature communications
container_volume 15
creator Li, Shuang
Yang, Hongtao
Qu, Xinhua
Qin, Yu
Liu, Aobo
Bao, Guo
Huang, He
Sun, Chaoyang
Dai, Jiabao
Tan, Junlong
Shi, Jiahui
Guan, Yan
Pan, Wei
Gu, Xuenan
Jia, Bo
Wen, Peng
Wang, Xiaogang
Zheng, Yufeng
description Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn 4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4 , Il-10 , subsequently promoting osteogenesis. Rapid degradation inducing overdose toxicity remains challenging in porous biodegradable bone scaffolds. Here the authors present multiscale architecture design on ZnLi scaffolds with 90% porosity orchestrates immune responses and subsequent bone regeneration.
doi_str_mv 10.1038/s41467-024-47189-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3d8cdffcf4b14e5ab8161159fa59df4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3d8cdffcf4b14e5ab8161159fa59df4b</doaj_id><sourcerecordid>3038428777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3</originalsourceid><addsrcrecordid>eNp9kc1u3SAQRq2qVRMleYEuKqRuunEKBgwsq_QnkVJl02yyQWMYXF_Z5hbsSHn7cuM0rbooG9DozAfDqao3jJ4zyvWHLJhoVU0bUQvFtKnli-q4oYLVTDX85V_no-os5x0tixumhXhdHXHdUklZc1zdf1vHZcgORiSQ3I9hQbesCYnHPPQziYHwT2SfhnlBT7oheuwTeOgKfzfXHeRS3scU10xKSghx9JmEmMgwTescp-jXEZaYHkjMC8Ye5xKcT6tXAcaMZ0_7SXX75fP3i8v6-ubr1cXH69oJLZeaceqBK6aoa00HVDVtQBC8A6-axgELwvvOUIkAMjgpgnYoS1dgnBlEflJdbbk-ws6WMSZIDzbCYB8LMfUW0jK4ES332vkQXBAdEyih06xlTJoA0vhSLFnvt6x9ij9XzIudysfhOMKMZXzLixbRaKVUQd_9g-7imuYy6YFSzGhqTKGajXIp5pwwPD-QUXuQbDfJtki2j5KtLE1vn6LXbkL_3PJbaQH4BuSDtR7Tn7v_E_sLEyq0XA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037198099</pqid></control><display><type>article</type><title>Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Shuang ; Yang, Hongtao ; Qu, Xinhua ; Qin, Yu ; Liu, Aobo ; Bao, Guo ; Huang, He ; Sun, Chaoyang ; Dai, Jiabao ; Tan, Junlong ; Shi, Jiahui ; Guan, Yan ; Pan, Wei ; Gu, Xuenan ; Jia, Bo ; Wen, Peng ; Wang, Xiaogang ; Zheng, Yufeng</creator><creatorcontrib>Li, Shuang ; Yang, Hongtao ; Qu, Xinhua ; Qin, Yu ; Liu, Aobo ; Bao, Guo ; Huang, He ; Sun, Chaoyang ; Dai, Jiabao ; Tan, Junlong ; Shi, Jiahui ; Guan, Yan ; Pan, Wei ; Gu, Xuenan ; Jia, Bo ; Wen, Peng ; Wang, Xiaogang ; Zheng, Yufeng</creatorcontrib><description>Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn 4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4 , Il-10 , subsequently promoting osteogenesis. Rapid degradation inducing overdose toxicity remains challenging in porous biodegradable bone scaffolds. Here the authors present multiscale architecture design on ZnLi scaffolds with 90% porosity orchestrates immune responses and subsequent bone regeneration.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-47189-5</identifier><identifier>PMID: 38605012</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/51 ; 14/19 ; 147/135 ; 147/3 ; 631/61/54/990 ; 639/301/54/993 ; Biocompatibility ; Biodegradability ; Biodegradable materials ; Biodegradation ; Bone growth ; Degradation ; Eutectoids ; Filopodia ; Humanities and Social Sciences ; Immune response ; Immunomodulation ; Inflammation ; Lamellar structure ; Macrophages ; Minimal surfaces ; multidisciplinary ; Osteogenesis ; Overdose ; Phenotypes ; Porosity ; Porous materials ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Science ; Science (multidisciplinary) ; Three dimensional printing ; Toxicity ; Transcriptomics ; Zinc</subject><ispartof>Nature communications, 2024-04, Vol.15 (1), p.3131-3131, Article 3131</ispartof><rights>The Author(s) 2024. corrected publication 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3</citedby><cites>FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3</cites><orcidid>0000-0003-2802-4795 ; 0000-0001-9798-834X ; 0000-0002-5656-1988 ; 0000-0002-7402-9979 ; 0000-0002-4809-6457 ; 0000-0002-0495-1554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3037198099/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3037198099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38605012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Yang, Hongtao</creatorcontrib><creatorcontrib>Qu, Xinhua</creatorcontrib><creatorcontrib>Qin, Yu</creatorcontrib><creatorcontrib>Liu, Aobo</creatorcontrib><creatorcontrib>Bao, Guo</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><creatorcontrib>Sun, Chaoyang</creatorcontrib><creatorcontrib>Dai, Jiabao</creatorcontrib><creatorcontrib>Tan, Junlong</creatorcontrib><creatorcontrib>Shi, Jiahui</creatorcontrib><creatorcontrib>Guan, Yan</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Gu, Xuenan</creatorcontrib><creatorcontrib>Jia, Bo</creatorcontrib><creatorcontrib>Wen, Peng</creatorcontrib><creatorcontrib>Wang, Xiaogang</creatorcontrib><creatorcontrib>Zheng, Yufeng</creatorcontrib><title>Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn 4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4 , Il-10 , subsequently promoting osteogenesis. Rapid degradation inducing overdose toxicity remains challenging in porous biodegradable bone scaffolds. Here the authors present multiscale architecture design on ZnLi scaffolds with 90% porosity orchestrates immune responses and subsequent bone regeneration.</description><subject>13/1</subject><subject>13/51</subject><subject>14/19</subject><subject>147/135</subject><subject>147/3</subject><subject>631/61/54/990</subject><subject>639/301/54/993</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradable materials</subject><subject>Biodegradation</subject><subject>Bone growth</subject><subject>Degradation</subject><subject>Eutectoids</subject><subject>Filopodia</subject><subject>Humanities and Social Sciences</subject><subject>Immune response</subject><subject>Immunomodulation</subject><subject>Inflammation</subject><subject>Lamellar structure</subject><subject>Macrophages</subject><subject>Minimal surfaces</subject><subject>multidisciplinary</subject><subject>Osteogenesis</subject><subject>Overdose</subject><subject>Phenotypes</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Three dimensional printing</subject><subject>Toxicity</subject><subject>Transcriptomics</subject><subject>Zinc</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u3SAQRq2qVRMleYEuKqRuunEKBgwsq_QnkVJl02yyQWMYXF_Z5hbsSHn7cuM0rbooG9DozAfDqao3jJ4zyvWHLJhoVU0bUQvFtKnli-q4oYLVTDX85V_no-os5x0tixumhXhdHXHdUklZc1zdf1vHZcgORiSQ3I9hQbesCYnHPPQziYHwT2SfhnlBT7oheuwTeOgKfzfXHeRS3scU10xKSghx9JmEmMgwTescp-jXEZaYHkjMC8Ye5xKcT6tXAcaMZ0_7SXX75fP3i8v6-ubr1cXH69oJLZeaceqBK6aoa00HVDVtQBC8A6-axgELwvvOUIkAMjgpgnYoS1dgnBlEflJdbbk-ws6WMSZIDzbCYB8LMfUW0jK4ES332vkQXBAdEyih06xlTJoA0vhSLFnvt6x9ij9XzIudysfhOMKMZXzLixbRaKVUQd_9g-7imuYy6YFSzGhqTKGajXIp5pwwPD-QUXuQbDfJtki2j5KtLE1vn6LXbkL_3PJbaQH4BuSDtR7Tn7v_E_sLEyq0XA</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Li, Shuang</creator><creator>Yang, Hongtao</creator><creator>Qu, Xinhua</creator><creator>Qin, Yu</creator><creator>Liu, Aobo</creator><creator>Bao, Guo</creator><creator>Huang, He</creator><creator>Sun, Chaoyang</creator><creator>Dai, Jiabao</creator><creator>Tan, Junlong</creator><creator>Shi, Jiahui</creator><creator>Guan, Yan</creator><creator>Pan, Wei</creator><creator>Gu, Xuenan</creator><creator>Jia, Bo</creator><creator>Wen, Peng</creator><creator>Wang, Xiaogang</creator><creator>Zheng, Yufeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2802-4795</orcidid><orcidid>https://orcid.org/0000-0001-9798-834X</orcidid><orcidid>https://orcid.org/0000-0002-5656-1988</orcidid><orcidid>https://orcid.org/0000-0002-7402-9979</orcidid><orcidid>https://orcid.org/0000-0002-4809-6457</orcidid><orcidid>https://orcid.org/0000-0002-0495-1554</orcidid></search><sort><creationdate>20240411</creationdate><title>Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis</title><author>Li, Shuang ; Yang, Hongtao ; Qu, Xinhua ; Qin, Yu ; Liu, Aobo ; Bao, Guo ; Huang, He ; Sun, Chaoyang ; Dai, Jiabao ; Tan, Junlong ; Shi, Jiahui ; Guan, Yan ; Pan, Wei ; Gu, Xuenan ; Jia, Bo ; Wen, Peng ; Wang, Xiaogang ; Zheng, Yufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/1</topic><topic>13/51</topic><topic>14/19</topic><topic>147/135</topic><topic>147/3</topic><topic>631/61/54/990</topic><topic>639/301/54/993</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradable materials</topic><topic>Biodegradation</topic><topic>Bone growth</topic><topic>Degradation</topic><topic>Eutectoids</topic><topic>Filopodia</topic><topic>Humanities and Social Sciences</topic><topic>Immune response</topic><topic>Immunomodulation</topic><topic>Inflammation</topic><topic>Lamellar structure</topic><topic>Macrophages</topic><topic>Minimal surfaces</topic><topic>multidisciplinary</topic><topic>Osteogenesis</topic><topic>Overdose</topic><topic>Phenotypes</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Three dimensional printing</topic><topic>Toxicity</topic><topic>Transcriptomics</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Yang, Hongtao</creatorcontrib><creatorcontrib>Qu, Xinhua</creatorcontrib><creatorcontrib>Qin, Yu</creatorcontrib><creatorcontrib>Liu, Aobo</creatorcontrib><creatorcontrib>Bao, Guo</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><creatorcontrib>Sun, Chaoyang</creatorcontrib><creatorcontrib>Dai, Jiabao</creatorcontrib><creatorcontrib>Tan, Junlong</creatorcontrib><creatorcontrib>Shi, Jiahui</creatorcontrib><creatorcontrib>Guan, Yan</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Gu, Xuenan</creatorcontrib><creatorcontrib>Jia, Bo</creatorcontrib><creatorcontrib>Wen, Peng</creatorcontrib><creatorcontrib>Wang, Xiaogang</creatorcontrib><creatorcontrib>Zheng, Yufeng</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuang</au><au>Yang, Hongtao</au><au>Qu, Xinhua</au><au>Qin, Yu</au><au>Liu, Aobo</au><au>Bao, Guo</au><au>Huang, He</au><au>Sun, Chaoyang</au><au>Dai, Jiabao</au><au>Tan, Junlong</au><au>Shi, Jiahui</au><au>Guan, Yan</au><au>Pan, Wei</au><au>Gu, Xuenan</au><au>Jia, Bo</au><au>Wen, Peng</au><au>Wang, Xiaogang</au><au>Zheng, Yufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-04-11</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>3131</spage><epage>3131</epage><pages>3131-3131</pages><artnum>3131</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn 4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4 , Il-10 , subsequently promoting osteogenesis. Rapid degradation inducing overdose toxicity remains challenging in porous biodegradable bone scaffolds. Here the authors present multiscale architecture design on ZnLi scaffolds with 90% porosity orchestrates immune responses and subsequent bone regeneration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38605012</pmid><doi>10.1038/s41467-024-47189-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2802-4795</orcidid><orcidid>https://orcid.org/0000-0001-9798-834X</orcidid><orcidid>https://orcid.org/0000-0002-5656-1988</orcidid><orcidid>https://orcid.org/0000-0002-7402-9979</orcidid><orcidid>https://orcid.org/0000-0002-4809-6457</orcidid><orcidid>https://orcid.org/0000-0002-0495-1554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-04, Vol.15 (1), p.3131-3131, Article 3131
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3d8cdffcf4b14e5ab8161159fa59df4b
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/51
14/19
147/135
147/3
631/61/54/990
639/301/54/993
Biocompatibility
Biodegradability
Biodegradable materials
Biodegradation
Bone growth
Degradation
Eutectoids
Filopodia
Humanities and Social Sciences
Immune response
Immunomodulation
Inflammation
Lamellar structure
Macrophages
Minimal surfaces
multidisciplinary
Osteogenesis
Overdose
Phenotypes
Porosity
Porous materials
Regeneration
Regeneration (physiology)
Scaffolds
Science
Science (multidisciplinary)
Three dimensional printing
Toxicity
Transcriptomics
Zinc
title Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20architecture%20design%20of%203D%20printed%20biodegradable%20Zn-based%20porous%20scaffolds%20for%20immunomodulatory%20osteogenesis&rft.jtitle=Nature%20communications&rft.au=Li,%20Shuang&rft.date=2024-04-11&rft.volume=15&rft.issue=1&rft.spage=3131&rft.epage=3131&rft.pages=3131-3131&rft.artnum=3131&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-47189-5&rft_dat=%3Cproquest_doaj_%3E3038428777%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-130da37170c69ba0726fea43bad722ca1f4ddb905eaa5fc54f8ce5130f1319ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037198099&rft_id=info:pmid/38605012&rfr_iscdi=true