Loading…
Entropy of Artificial Intelligence
We describe a model of artificial intelligence systems based on the dimension of the probability space of the input set available for recognition. In this scenario, we can understand a subset, which means that we can decide whether an object is an element of a given subset or not in an efficient way...
Saved in:
Published in: | Universe (Basel) 2022-01, Vol.8 (1), p.53 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe a model of artificial intelligence systems based on the dimension of the probability space of the input set available for recognition. In this scenario, we can understand a subset, which means that we can decide whether an object is an element of a given subset or not in an efficient way. In the machine learning (ML) process we define appropriate features, in this way shrinking the defining bit-length of classified sets during the learning process. This can also be described in the language of entropy: while natural processes tend to increase the disorder, that is, increase the entropy, learning creates order, and we expect that it decreases a properly defined entropy. |
---|---|
ISSN: | 2218-1997 2218-1997 |
DOI: | 10.3390/universe8010053 |