Loading…

An in vivo model allowing continuous observation of human vascular formation in the same animal over time

Angiogenesis contributes to numerous pathological conditions. Understanding the molecular mechanisms of angiogenesis will offer new therapeutic opportunities. Several experimental in vivo models that better represent the pathological conditions have been generated for this purpose in mice, but it is...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-01, Vol.11 (1), p.745-745, Article 745
Main Authors: Tsukada, Yohei, Muramatsu, Fumitaka, Hayashi, Yumiko, Inagaki, Chiaki, Su, Hang, Iba, Tomohiro, Kidoya, Hiroyasu, Takakura, Nobuyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c643t-d93292640d467059ec1c2d56aedaad48b6658a24f00259615357745c59e591703
cites cdi_FETCH-LOGICAL-c643t-d93292640d467059ec1c2d56aedaad48b6658a24f00259615357745c59e591703
container_end_page 745
container_issue 1
container_start_page 745
container_title Scientific reports
container_volume 11
creator Tsukada, Yohei
Muramatsu, Fumitaka
Hayashi, Yumiko
Inagaki, Chiaki
Su, Hang
Iba, Tomohiro
Kidoya, Hiroyasu
Takakura, Nobuyuki
description Angiogenesis contributes to numerous pathological conditions. Understanding the molecular mechanisms of angiogenesis will offer new therapeutic opportunities. Several experimental in vivo models that better represent the pathological conditions have been generated for this purpose in mice, but it is difficult to translate results from mouse to human blood vessels. To understand human vascular biology and translate findings into human research, we need human blood vessel models to replicate human vascular physiology. Here, we show that human tumor tissue transplantation into a cranial window enables engraftment of human blood vessels in mice. An in vivo imaging technique using two-photon microscopy allows continuous observation of human blood vessels until at least 49 days after tumor transplantation. These human blood vessels make connections with mouse blood vessels as shown by the finding that lectin injected into the mouse tail vein reaches the human blood vessels. Finally, this model revealed that formation and/or maintenance of human blood vessels depends on VEGFR2 signaling. This approach represents a useful tool to study molecular mechanisms of human blood vessel formation and to test effects of drugs that target human blood vessels in vivo to show proof of concept in a preclinical model.
doi_str_mv 10.1038/s41598-020-80497-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3dc28d15ce0443be96af6006545bcfeb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3dc28d15ce0443be96af6006545bcfeb</doaj_id><sourcerecordid>2477090869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-d93292640d467059ec1c2d56aedaad48b6658a24f00259615357745c59e591703</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEotXSP8ABWeLCJeDvxBekqgJaqRIXOFuOPdn1yrGLnSzqv8fdtKXlgC-2PO88nhm_TfOW4I8Es_5T4USovsUUtz3mqmvli-aUYi5ayih9-eR80pyVssd1Cao4Ua-bE8Y4k4qR08afR-QjOvhDQlNyEJAJIf32cYtsirOPS1oKSkOBfDCzTxGlEe2WydQcU-wSTEZjytMaq6R5B6iYCZCJfjIBpQNkNPsJ3jSvRhMKnN3vm-bn1y8_Li7b6-_fri7Or1srOZtbpxhVVHLsuOywUGCJpU5IA84Yx_tBStEbykeMqVCSCCa6jgtblUKRDrNNc7VyXTJ7fZNrFflWJ-P18SLlrTZ59jaAZs7S3hFhAXPOBlDSjBJjKbgY7AhDZX1eWTfLMIGzEOdswjPo80j0O71NB93VP-G8r4AP94Ccfi1QZj35YiEEE6EOVlPedaL2oO7qfv-PdJ-WHOuojiqscF-_bNPQVWVzKiXD-FgMwfrOGHo1hq7G0EdjaFmT3j1t4zHlwQZVwFZBqaG4hfz37f9g_wByvsO1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477090869</pqid></control><display><type>article</type><title>An in vivo model allowing continuous observation of human vascular formation in the same animal over time</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tsukada, Yohei ; Muramatsu, Fumitaka ; Hayashi, Yumiko ; Inagaki, Chiaki ; Su, Hang ; Iba, Tomohiro ; Kidoya, Hiroyasu ; Takakura, Nobuyuki</creator><creatorcontrib>Tsukada, Yohei ; Muramatsu, Fumitaka ; Hayashi, Yumiko ; Inagaki, Chiaki ; Su, Hang ; Iba, Tomohiro ; Kidoya, Hiroyasu ; Takakura, Nobuyuki</creatorcontrib><description>Angiogenesis contributes to numerous pathological conditions. Understanding the molecular mechanisms of angiogenesis will offer new therapeutic opportunities. Several experimental in vivo models that better represent the pathological conditions have been generated for this purpose in mice, but it is difficult to translate results from mouse to human blood vessels. To understand human vascular biology and translate findings into human research, we need human blood vessel models to replicate human vascular physiology. Here, we show that human tumor tissue transplantation into a cranial window enables engraftment of human blood vessels in mice. An in vivo imaging technique using two-photon microscopy allows continuous observation of human blood vessels until at least 49 days after tumor transplantation. These human blood vessels make connections with mouse blood vessels as shown by the finding that lectin injected into the mouse tail vein reaches the human blood vessels. Finally, this model revealed that formation and/or maintenance of human blood vessels depends on VEGFR2 signaling. This approach represents a useful tool to study molecular mechanisms of human blood vessel formation and to test effects of drugs that target human blood vessels in vivo to show proof of concept in a preclinical model.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-80497-6</identifier><identifier>PMID: 33436931</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/245 ; 631/1647/328 ; 631/337 ; 631/80 ; Angiogenesis ; Blood vessels ; Humanities and Social Sciences ; Immunosuppressive agents ; Molecular modelling ; multidisciplinary ; Science ; Science (multidisciplinary) ; Transplantation</subject><ispartof>Scientific reports, 2021-01, Vol.11 (1), p.745-745, Article 745</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-d93292640d467059ec1c2d56aedaad48b6658a24f00259615357745c59e591703</citedby><cites>FETCH-LOGICAL-c643t-d93292640d467059ec1c2d56aedaad48b6658a24f00259615357745c59e591703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2477090869/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2477090869?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33436931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsukada, Yohei</creatorcontrib><creatorcontrib>Muramatsu, Fumitaka</creatorcontrib><creatorcontrib>Hayashi, Yumiko</creatorcontrib><creatorcontrib>Inagaki, Chiaki</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Iba, Tomohiro</creatorcontrib><creatorcontrib>Kidoya, Hiroyasu</creatorcontrib><creatorcontrib>Takakura, Nobuyuki</creatorcontrib><title>An in vivo model allowing continuous observation of human vascular formation in the same animal over time</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Angiogenesis contributes to numerous pathological conditions. Understanding the molecular mechanisms of angiogenesis will offer new therapeutic opportunities. Several experimental in vivo models that better represent the pathological conditions have been generated for this purpose in mice, but it is difficult to translate results from mouse to human blood vessels. To understand human vascular biology and translate findings into human research, we need human blood vessel models to replicate human vascular physiology. Here, we show that human tumor tissue transplantation into a cranial window enables engraftment of human blood vessels in mice. An in vivo imaging technique using two-photon microscopy allows continuous observation of human blood vessels until at least 49 days after tumor transplantation. These human blood vessels make connections with mouse blood vessels as shown by the finding that lectin injected into the mouse tail vein reaches the human blood vessels. Finally, this model revealed that formation and/or maintenance of human blood vessels depends on VEGFR2 signaling. This approach represents a useful tool to study molecular mechanisms of human blood vessel formation and to test effects of drugs that target human blood vessels in vivo to show proof of concept in a preclinical model.</description><subject>631/1647/245</subject><subject>631/1647/328</subject><subject>631/337</subject><subject>631/80</subject><subject>Angiogenesis</subject><subject>Blood vessels</subject><subject>Humanities and Social Sciences</subject><subject>Immunosuppressive agents</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transplantation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEotXSP8ABWeLCJeDvxBekqgJaqRIXOFuOPdn1yrGLnSzqv8fdtKXlgC-2PO88nhm_TfOW4I8Es_5T4USovsUUtz3mqmvli-aUYi5ayih9-eR80pyVssd1Cao4Ua-bE8Y4k4qR08afR-QjOvhDQlNyEJAJIf32cYtsirOPS1oKSkOBfDCzTxGlEe2WydQcU-wSTEZjytMaq6R5B6iYCZCJfjIBpQNkNPsJ3jSvRhMKnN3vm-bn1y8_Li7b6-_fri7Or1srOZtbpxhVVHLsuOywUGCJpU5IA84Yx_tBStEbykeMqVCSCCa6jgtblUKRDrNNc7VyXTJ7fZNrFflWJ-P18SLlrTZ59jaAZs7S3hFhAXPOBlDSjBJjKbgY7AhDZX1eWTfLMIGzEOdswjPo80j0O71NB93VP-G8r4AP94Ccfi1QZj35YiEEE6EOVlPedaL2oO7qfv-PdJ-WHOuojiqscF-_bNPQVWVzKiXD-FgMwfrOGHo1hq7G0EdjaFmT3j1t4zHlwQZVwFZBqaG4hfz37f9g_wByvsO1</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>Tsukada, Yohei</creator><creator>Muramatsu, Fumitaka</creator><creator>Hayashi, Yumiko</creator><creator>Inagaki, Chiaki</creator><creator>Su, Hang</creator><creator>Iba, Tomohiro</creator><creator>Kidoya, Hiroyasu</creator><creator>Takakura, Nobuyuki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210112</creationdate><title>An in vivo model allowing continuous observation of human vascular formation in the same animal over time</title><author>Tsukada, Yohei ; Muramatsu, Fumitaka ; Hayashi, Yumiko ; Inagaki, Chiaki ; Su, Hang ; Iba, Tomohiro ; Kidoya, Hiroyasu ; Takakura, Nobuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-d93292640d467059ec1c2d56aedaad48b6658a24f00259615357745c59e591703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/245</topic><topic>631/1647/328</topic><topic>631/337</topic><topic>631/80</topic><topic>Angiogenesis</topic><topic>Blood vessels</topic><topic>Humanities and Social Sciences</topic><topic>Immunosuppressive agents</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsukada, Yohei</creatorcontrib><creatorcontrib>Muramatsu, Fumitaka</creatorcontrib><creatorcontrib>Hayashi, Yumiko</creatorcontrib><creatorcontrib>Inagaki, Chiaki</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Iba, Tomohiro</creatorcontrib><creatorcontrib>Kidoya, Hiroyasu</creatorcontrib><creatorcontrib>Takakura, Nobuyuki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsukada, Yohei</au><au>Muramatsu, Fumitaka</au><au>Hayashi, Yumiko</au><au>Inagaki, Chiaki</au><au>Su, Hang</au><au>Iba, Tomohiro</au><au>Kidoya, Hiroyasu</au><au>Takakura, Nobuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An in vivo model allowing continuous observation of human vascular formation in the same animal over time</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-01-12</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>745</spage><epage>745</epage><pages>745-745</pages><artnum>745</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Angiogenesis contributes to numerous pathological conditions. Understanding the molecular mechanisms of angiogenesis will offer new therapeutic opportunities. Several experimental in vivo models that better represent the pathological conditions have been generated for this purpose in mice, but it is difficult to translate results from mouse to human blood vessels. To understand human vascular biology and translate findings into human research, we need human blood vessel models to replicate human vascular physiology. Here, we show that human tumor tissue transplantation into a cranial window enables engraftment of human blood vessels in mice. An in vivo imaging technique using two-photon microscopy allows continuous observation of human blood vessels until at least 49 days after tumor transplantation. These human blood vessels make connections with mouse blood vessels as shown by the finding that lectin injected into the mouse tail vein reaches the human blood vessels. Finally, this model revealed that formation and/or maintenance of human blood vessels depends on VEGFR2 signaling. This approach represents a useful tool to study molecular mechanisms of human blood vessel formation and to test effects of drugs that target human blood vessels in vivo to show proof of concept in a preclinical model.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33436931</pmid><doi>10.1038/s41598-020-80497-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-01, Vol.11 (1), p.745-745, Article 745
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3dc28d15ce0443be96af6006545bcfeb
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/1647/245
631/1647/328
631/337
631/80
Angiogenesis
Blood vessels
Humanities and Social Sciences
Immunosuppressive agents
Molecular modelling
multidisciplinary
Science
Science (multidisciplinary)
Transplantation
title An in vivo model allowing continuous observation of human vascular formation in the same animal over time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20in%20vivo%20model%20allowing%20continuous%20observation%20of%20human%20vascular%20formation%20in%20the%20same%20animal%20over%20time&rft.jtitle=Scientific%20reports&rft.au=Tsukada,%20Yohei&rft.date=2021-01-12&rft.volume=11&rft.issue=1&rft.spage=745&rft.epage=745&rft.pages=745-745&rft.artnum=745&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-80497-6&rft_dat=%3Cproquest_doaj_%3E2477090869%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c643t-d93292640d467059ec1c2d56aedaad48b6658a24f00259615357745c59e591703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477090869&rft_id=info:pmid/33436931&rfr_iscdi=true