Loading…

Evaluating Eight Global Reanalysis Products for Atmospheric Correction of Thermal Infrared Sensor—Application to Landsat 8 TIRS10 Data

Global reanalysis products have been widely used for correcting the atmospheric effects of thermal infrared data, but their performances have not been comprehensively evaluated. In this paper, we evaluate eight global reanalysis products (NCEP/FNL; NCEP/DOE Reanalysis2; MERRA-3; MERRA-6; MERRA2-3; M...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2018-03, Vol.10 (3), p.474
Main Authors: Meng, Xiangchen, Cheng, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global reanalysis products have been widely used for correcting the atmospheric effects of thermal infrared data, but their performances have not been comprehensively evaluated. In this paper, we evaluate eight global reanalysis products (NCEP/FNL; NCEP/DOE Reanalysis2; MERRA-3; MERRA-6; MERRA2-3; MERRA2-6; JRA-55; and ERA-Interim) commonly used in the atmospheric correction of Landsat 8 TIRS10 data by referencing global radiosonde observations collected from 163 stations. The atmospheric parameters (atmospheric transmittance, upward radiance, and downward radiance) simulated with MERRA-6 and ERA-Interim were accurate than those simulated with other reanalysis products for different water vapor contents and surface elevations. When global reanalysis products were applied to retrieve land surface temperature (LST) from simulated Landsat 8 TIRS10 data, ERA-Interim and MERRA-6 were accurate than other reanalysis products. The overall LST biases and RMSEs between the retrieved LSTs and LSTs that were used to generate the top-of-atmosphere radiances were less than 0.2 K and 1.09 K, respectively. When eight reanalysis products were used to estimate LSTs from thirty-two Landsat 8 TIRS10 images covering the Heihe River basin in China, the various reanalysis products showed similar validation accuracies for LSTs with low water vapor contents. The biases ranged from 0.07 K to 0.24 K, and the STDs (RMSEs) ranged from 1.93 K (1.93 K) to 2.02 K (2.04 K). Considering the above evaluation results, MERRA-6 and ERA-Interim are recommended for thermal infrared data atmospheric corrections.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs10030474