Loading…
Untargeted Urinary 1H NMR-Based Metabolomic Pattern as a Potential Platform in Breast Cancer Detection
Breast cancer (BC) remains the second leading cause of death among women worldwide. An emerging approach based on the identification of endogenous metabolites (EMs) and the establishment of the metabolomic fingerprint of biological fluids constitutes a new frontier in medical diagnostics and a promi...
Saved in:
Published in: | Metabolites 2019-11, Vol.9 (11), p.269 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-b5dd7fd38aa6c32c8a4a0389f7bf98f99665f2b4fc84fec993b992791ee3beed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-b5dd7fd38aa6c32c8a4a0389f7bf98f99665f2b4fc84fec993b992791ee3beed3 |
container_end_page | |
container_issue | 11 |
container_start_page | 269 |
container_title | Metabolites |
container_volume | 9 |
creator | Silva, Catarina L. Olival, Ana Perestrelo, Rosa Silva, Pedro Tomás, Helena Câmara, José S. |
description | Breast cancer (BC) remains the second leading cause of death among women worldwide. An emerging approach based on the identification of endogenous metabolites (EMs) and the establishment of the metabolomic fingerprint of biological fluids constitutes a new frontier in medical diagnostics and a promising strategy to differentiate cancer patients from healthy individuals. In this work we aimed to establish the urinary metabolomic patterns from 40 BC patients and 38 healthy controls (CTL) using proton nuclear magnetic resonance spectroscopy (1H-NMR) as a powerful approach to identify a set of BC-specific metabolites which might be employed in the diagnosis of BC. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied to a 1H-NMR processed data matrix. Metabolomic patterns distinguished BC from CTL urine samples, suggesting a unique metabolite profile for each investigated group. A total of 10 metabolites exhibited the highest contribution towards discriminating BC patients from healthy controls (variable importance in projection (VIP) >1, p < 0.05). The discrimination efficiency and accuracy of the urinary EMs were ascertained by receiver operating characteristic curve (ROC) analysis that allowed the identification of some metabolites with the highest sensitivities and specificities to discriminate BC patients from healthy controls (e.g. creatine, glycine, trimethylamine N-oxide, and serine). The metabolomic pathway analysis indicated several metabolism pathway disruptions, including amino acid and carbohydrate metabolisms, in BC patients, namely, glycine and butanoate metabolisms. The obtained results support the high throughput potential of NMR-based urinary metabolomics patterns in discriminating BC patients from CTL. Further investigations could unravel novel mechanistic insights into disease pathophysiology, monitor disease recurrence, and predict patient response towards therapy. |
doi_str_mv | 10.3390/metabo9110269 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3dd2f2d1228d4ab5a12b7b90d8abfadb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3dd2f2d1228d4ab5a12b7b90d8abfadb</doaj_id><sourcerecordid>2313377056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b5dd7fd38aa6c32c8a4a0389f7bf98f99665f2b4fc84fec993b992791ee3beed3</originalsourceid><addsrcrecordid>eNpdkttrVDEQh4MottQ--h7wxZejuZxL8iLYrbWFVhdxn8PktmY5J6lJVvC_b-wWcZ2XGWZ-fHNhEHpNyTvOJXm_uAo6SUoJG-UzdMoYFR2VQj7_Jz5B56XsSLORDBOhL9EJpxNpgPEU-U2skLeuOos3OUTIvzG9xl_uvnUXUFry7rHFnJZg8BpqdTliKBjwOlUXa4AZr2eoPuUFh4gvsoNS8QqicRlfNq6pIcVX6IWHubjzJ3-GNlefvq-uu9uvn29WH287w4WonR6snbzlAmA0nBkBPRAupJ-0l8JLOY6DZ7r3RvTeGSm5lpJNkjrHtXOWn6GbA9cm2Kn7HJa2kEoQ1GMi5a2CXIOZneLWMs8sZUzYHvQAlOlJS2IFaA9WN9aHA-t-rxdnTds2w3wEPa7E8ENt0y81Sip6Ihvg7RMgp597V6paQjFuniG6tC-Kccr5NJFhbNI3_0l3aZ9jO5ViQy8EHfqhb6ruoDI5lZKd_zsMJerPQ6ijh-APNvuplg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548815454</pqid></control><display><type>article</type><title>Untargeted Urinary 1H NMR-Based Metabolomic Pattern as a Potential Platform in Breast Cancer Detection</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Silva, Catarina L. ; Olival, Ana ; Perestrelo, Rosa ; Silva, Pedro ; Tomás, Helena ; Câmara, José S.</creator><creatorcontrib>Silva, Catarina L. ; Olival, Ana ; Perestrelo, Rosa ; Silva, Pedro ; Tomás, Helena ; Câmara, José S.</creatorcontrib><description>Breast cancer (BC) remains the second leading cause of death among women worldwide. An emerging approach based on the identification of endogenous metabolites (EMs) and the establishment of the metabolomic fingerprint of biological fluids constitutes a new frontier in medical diagnostics and a promising strategy to differentiate cancer patients from healthy individuals. In this work we aimed to establish the urinary metabolomic patterns from 40 BC patients and 38 healthy controls (CTL) using proton nuclear magnetic resonance spectroscopy (1H-NMR) as a powerful approach to identify a set of BC-specific metabolites which might be employed in the diagnosis of BC. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied to a 1H-NMR processed data matrix. Metabolomic patterns distinguished BC from CTL urine samples, suggesting a unique metabolite profile for each investigated group. A total of 10 metabolites exhibited the highest contribution towards discriminating BC patients from healthy controls (variable importance in projection (VIP) >1, p < 0.05). The discrimination efficiency and accuracy of the urinary EMs were ascertained by receiver operating characteristic curve (ROC) analysis that allowed the identification of some metabolites with the highest sensitivities and specificities to discriminate BC patients from healthy controls (e.g. creatine, glycine, trimethylamine N-oxide, and serine). The metabolomic pathway analysis indicated several metabolism pathway disruptions, including amino acid and carbohydrate metabolisms, in BC patients, namely, glycine and butanoate metabolisms. The obtained results support the high throughput potential of NMR-based urinary metabolomics patterns in discriminating BC patients from CTL. Further investigations could unravel novel mechanistic insights into disease pathophysiology, monitor disease recurrence, and predict patient response towards therapy.</description><identifier>ISSN: 2218-1989</identifier><identifier>EISSN: 2218-1989</identifier><identifier>DOI: 10.3390/metabo9110269</identifier><identifier>PMID: 31703396</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>1h nmr ; Amino acids ; Antigens ; Biomarkers ; Blood & organ donations ; Breast cancer ; Cancer therapies ; chemometric tools ; Chromatography ; Creatine ; Cytotoxicity ; Glycine ; Libraries ; Lymphocytes T ; Magnetic fields ; Magnetic resonance spectroscopy ; Mammography ; Mass spectrometry ; Metabolites ; Metabolomics ; NMR ; Nuclear magnetic resonance ; Patients ; Potassium ; Scientific imaging ; Serine ; Statistical analysis ; Trimethylamine ; Urine</subject><ispartof>Metabolites, 2019-11, Vol.9 (11), p.269</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b5dd7fd38aa6c32c8a4a0389f7bf98f99665f2b4fc84fec993b992791ee3beed3</citedby><cites>FETCH-LOGICAL-c388t-b5dd7fd38aa6c32c8a4a0389f7bf98f99665f2b4fc84fec993b992791ee3beed3</cites><orcidid>0000-0003-1487-9346 ; 0000-0003-1965-3151 ; 0000-0002-3018-3165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548815454/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548815454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Silva, Catarina L.</creatorcontrib><creatorcontrib>Olival, Ana</creatorcontrib><creatorcontrib>Perestrelo, Rosa</creatorcontrib><creatorcontrib>Silva, Pedro</creatorcontrib><creatorcontrib>Tomás, Helena</creatorcontrib><creatorcontrib>Câmara, José S.</creatorcontrib><title>Untargeted Urinary 1H NMR-Based Metabolomic Pattern as a Potential Platform in Breast Cancer Detection</title><title>Metabolites</title><description>Breast cancer (BC) remains the second leading cause of death among women worldwide. An emerging approach based on the identification of endogenous metabolites (EMs) and the establishment of the metabolomic fingerprint of biological fluids constitutes a new frontier in medical diagnostics and a promising strategy to differentiate cancer patients from healthy individuals. In this work we aimed to establish the urinary metabolomic patterns from 40 BC patients and 38 healthy controls (CTL) using proton nuclear magnetic resonance spectroscopy (1H-NMR) as a powerful approach to identify a set of BC-specific metabolites which might be employed in the diagnosis of BC. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied to a 1H-NMR processed data matrix. Metabolomic patterns distinguished BC from CTL urine samples, suggesting a unique metabolite profile for each investigated group. A total of 10 metabolites exhibited the highest contribution towards discriminating BC patients from healthy controls (variable importance in projection (VIP) >1, p < 0.05). The discrimination efficiency and accuracy of the urinary EMs were ascertained by receiver operating characteristic curve (ROC) analysis that allowed the identification of some metabolites with the highest sensitivities and specificities to discriminate BC patients from healthy controls (e.g. creatine, glycine, trimethylamine N-oxide, and serine). The metabolomic pathway analysis indicated several metabolism pathway disruptions, including amino acid and carbohydrate metabolisms, in BC patients, namely, glycine and butanoate metabolisms. The obtained results support the high throughput potential of NMR-based urinary metabolomics patterns in discriminating BC patients from CTL. Further investigations could unravel novel mechanistic insights into disease pathophysiology, monitor disease recurrence, and predict patient response towards therapy.</description><subject>1h nmr</subject><subject>Amino acids</subject><subject>Antigens</subject><subject>Biomarkers</subject><subject>Blood & organ donations</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>chemometric tools</subject><subject>Chromatography</subject><subject>Creatine</subject><subject>Cytotoxicity</subject><subject>Glycine</subject><subject>Libraries</subject><subject>Lymphocytes T</subject><subject>Magnetic fields</subject><subject>Magnetic resonance spectroscopy</subject><subject>Mammography</subject><subject>Mass spectrometry</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Patients</subject><subject>Potassium</subject><subject>Scientific imaging</subject><subject>Serine</subject><subject>Statistical analysis</subject><subject>Trimethylamine</subject><subject>Urine</subject><issn>2218-1989</issn><issn>2218-1989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkttrVDEQh4MottQ--h7wxZejuZxL8iLYrbWFVhdxn8PktmY5J6lJVvC_b-wWcZ2XGWZ-fHNhEHpNyTvOJXm_uAo6SUoJG-UzdMoYFR2VQj7_Jz5B56XsSLORDBOhL9EJpxNpgPEU-U2skLeuOos3OUTIvzG9xl_uvnUXUFry7rHFnJZg8BpqdTliKBjwOlUXa4AZr2eoPuUFh4gvsoNS8QqicRlfNq6pIcVX6IWHubjzJ3-GNlefvq-uu9uvn29WH287w4WonR6snbzlAmA0nBkBPRAupJ-0l8JLOY6DZ7r3RvTeGSm5lpJNkjrHtXOWn6GbA9cm2Kn7HJa2kEoQ1GMi5a2CXIOZneLWMs8sZUzYHvQAlOlJS2IFaA9WN9aHA-t-rxdnTds2w3wEPa7E8ENt0y81Sip6Ihvg7RMgp597V6paQjFuniG6tC-Kccr5NJFhbNI3_0l3aZ9jO5ViQy8EHfqhb6ruoDI5lZKd_zsMJerPQ6ijh-APNvuplg</recordid><startdate>20191107</startdate><enddate>20191107</enddate><creator>Silva, Catarina L.</creator><creator>Olival, Ana</creator><creator>Perestrelo, Rosa</creator><creator>Silva, Pedro</creator><creator>Tomás, Helena</creator><creator>Câmara, José S.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1487-9346</orcidid><orcidid>https://orcid.org/0000-0003-1965-3151</orcidid><orcidid>https://orcid.org/0000-0002-3018-3165</orcidid></search><sort><creationdate>20191107</creationdate><title>Untargeted Urinary 1H NMR-Based Metabolomic Pattern as a Potential Platform in Breast Cancer Detection</title><author>Silva, Catarina L. ; Olival, Ana ; Perestrelo, Rosa ; Silva, Pedro ; Tomás, Helena ; Câmara, José S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b5dd7fd38aa6c32c8a4a0389f7bf98f99665f2b4fc84fec993b992791ee3beed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1h nmr</topic><topic>Amino acids</topic><topic>Antigens</topic><topic>Biomarkers</topic><topic>Blood & organ donations</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>chemometric tools</topic><topic>Chromatography</topic><topic>Creatine</topic><topic>Cytotoxicity</topic><topic>Glycine</topic><topic>Libraries</topic><topic>Lymphocytes T</topic><topic>Magnetic fields</topic><topic>Magnetic resonance spectroscopy</topic><topic>Mammography</topic><topic>Mass spectrometry</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Patients</topic><topic>Potassium</topic><topic>Scientific imaging</topic><topic>Serine</topic><topic>Statistical analysis</topic><topic>Trimethylamine</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Catarina L.</creatorcontrib><creatorcontrib>Olival, Ana</creatorcontrib><creatorcontrib>Perestrelo, Rosa</creatorcontrib><creatorcontrib>Silva, Pedro</creatorcontrib><creatorcontrib>Tomás, Helena</creatorcontrib><creatorcontrib>Câmara, José S.</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metabolites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Catarina L.</au><au>Olival, Ana</au><au>Perestrelo, Rosa</au><au>Silva, Pedro</au><au>Tomás, Helena</au><au>Câmara, José S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Untargeted Urinary 1H NMR-Based Metabolomic Pattern as a Potential Platform in Breast Cancer Detection</atitle><jtitle>Metabolites</jtitle><date>2019-11-07</date><risdate>2019</risdate><volume>9</volume><issue>11</issue><spage>269</spage><pages>269-</pages><issn>2218-1989</issn><eissn>2218-1989</eissn><abstract>Breast cancer (BC) remains the second leading cause of death among women worldwide. An emerging approach based on the identification of endogenous metabolites (EMs) and the establishment of the metabolomic fingerprint of biological fluids constitutes a new frontier in medical diagnostics and a promising strategy to differentiate cancer patients from healthy individuals. In this work we aimed to establish the urinary metabolomic patterns from 40 BC patients and 38 healthy controls (CTL) using proton nuclear magnetic resonance spectroscopy (1H-NMR) as a powerful approach to identify a set of BC-specific metabolites which might be employed in the diagnosis of BC. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied to a 1H-NMR processed data matrix. Metabolomic patterns distinguished BC from CTL urine samples, suggesting a unique metabolite profile for each investigated group. A total of 10 metabolites exhibited the highest contribution towards discriminating BC patients from healthy controls (variable importance in projection (VIP) >1, p < 0.05). The discrimination efficiency and accuracy of the urinary EMs were ascertained by receiver operating characteristic curve (ROC) analysis that allowed the identification of some metabolites with the highest sensitivities and specificities to discriminate BC patients from healthy controls (e.g. creatine, glycine, trimethylamine N-oxide, and serine). The metabolomic pathway analysis indicated several metabolism pathway disruptions, including amino acid and carbohydrate metabolisms, in BC patients, namely, glycine and butanoate metabolisms. The obtained results support the high throughput potential of NMR-based urinary metabolomics patterns in discriminating BC patients from CTL. Further investigations could unravel novel mechanistic insights into disease pathophysiology, monitor disease recurrence, and predict patient response towards therapy.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>31703396</pmid><doi>10.3390/metabo9110269</doi><orcidid>https://orcid.org/0000-0003-1487-9346</orcidid><orcidid>https://orcid.org/0000-0003-1965-3151</orcidid><orcidid>https://orcid.org/0000-0002-3018-3165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2218-1989 |
ispartof | Metabolites, 2019-11, Vol.9 (11), p.269 |
issn | 2218-1989 2218-1989 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3dd2f2d1228d4ab5a12b7b90d8abfadb |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | 1h nmr Amino acids Antigens Biomarkers Blood & organ donations Breast cancer Cancer therapies chemometric tools Chromatography Creatine Cytotoxicity Glycine Libraries Lymphocytes T Magnetic fields Magnetic resonance spectroscopy Mammography Mass spectrometry Metabolites Metabolomics NMR Nuclear magnetic resonance Patients Potassium Scientific imaging Serine Statistical analysis Trimethylamine Urine |
title | Untargeted Urinary 1H NMR-Based Metabolomic Pattern as a Potential Platform in Breast Cancer Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Untargeted%20Urinary%201H%20NMR-Based%20Metabolomic%20Pattern%20as%20a%20Potential%20Platform%20in%20Breast%20Cancer%20Detection&rft.jtitle=Metabolites&rft.au=Silva,%20Catarina%20L.&rft.date=2019-11-07&rft.volume=9&rft.issue=11&rft.spage=269&rft.pages=269-&rft.issn=2218-1989&rft.eissn=2218-1989&rft_id=info:doi/10.3390/metabo9110269&rft_dat=%3Cproquest_doaj_%3E2313377056%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-b5dd7fd38aa6c32c8a4a0389f7bf98f99665f2b4fc84fec993b992791ee3beed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548815454&rft_id=info:pmid/31703396&rfr_iscdi=true |