Loading…

Broadening bandgaps in a multi-resonant piezoelectric metamaterial plate via bandgap merging phenomena

Locally resonant metamaterials usually have narrow bandgaps, which significantly limits their applications in realistic engineering environments. In this paper, an optimization method based on the genetic algorithm is proposed to broaden bandgaps in multi-resonant piezoelectric metamaterial through...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-07, Vol.14 (1), p.16127-16, Article 16127
Main Authors: Li, Yuhao, Liu, Zhiyuan, Zhou, Hao, Yi, Kaijun, Zhu, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Locally resonant metamaterials usually have narrow bandgaps, which significantly limits their applications in realistic engineering environments. In this paper, an optimization method based on the genetic algorithm is proposed to broaden bandgaps in multi-resonant piezoelectric metamaterial through the merging of multiple separated bandgaps. Using the effective medium theory, the equivalent bending stiffness and dispersion relationship of a metamaterial plate are first obtained. Then, the criteria for determining the bandgap ranges for the two cases with and without damping are provided and analyzed. Furthermore, based on the bandgap merging phenomena, an optimization method for widening the bandgap is proposed based on the genetic algorithm. By investigating the bandgap widening effects in cases without and with damping, it is found that, when there is no damping, the bandgap can only be slightly widened; while after introducing damping into the transfer functions, the bandgap can be significantly widened by more than 200%. The bandgap widening effects are verified by comparing with finite element simulation results.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-66849-6