Loading…
Histone Deacetylase 1 Reduces Lipogenesis by Suppressing SREBP1 Transcription in Human Sebocyte Cell Line SZ95
Proper regulation of sebum production is important for maintaining skin homeostasis in humans. However, little is known about the role of epigenetic regulation in sebocyte lipogenesis. We investigated histone acetylation changes and their role in key lipogenic gene regulation during sebocyte lipogen...
Saved in:
Published in: | International journal of molecular sciences 2021-04, Vol.22 (9), p.4477 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Proper regulation of sebum production is important for maintaining skin homeostasis in humans. However, little is known about the role of epigenetic regulation in sebocyte lipogenesis. We investigated histone acetylation changes and their role in key lipogenic gene regulation during sebocyte lipogenesis using the human sebaceous gland cell line SZ95. Sebocyte lipogenesis is associated with a significant increase in histone acetylation. Treatment with anacardic acid (AA), a p300 histone acetyltransferase inhibitor, significantly decreased the lipid droplet number and the expression of key lipogenic genes, including sterol regulatory-binding protein 1 (SREBP1), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). In contrast, treatment with trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, increased the expression of these genes. Global HDAC enzyme activity was decreased, and HDAC1 and HDAC2 expression was downregulated during sebaceous lipogenesis. Interestingly, HDAC1 knockdown increased lipogenesis through SREBP1 induction, whereas HDAC1 overexpression decreased lipogenesis and significantly suppressed
promoter activity. HDAC1 and SREBP1 levels were inversely correlated in human skin sebaceous glands as demonstrated in immunofluorescence images. In conclusion, HDAC1 plays a critical role in reducing SREBP1 transcription, leading to decreased sebaceous lipogenesis. Therefore, HDAC1 activation could be an effective therapeutic strategy for skin diseases related to excessive sebum production. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms22094477 |