Loading…
The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction
Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (sn...
Saved in:
Published in: | Nature communications 2024-10, Vol.15 (1), p.9415-19, Article 9415 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-5400244ebeefa1ffc4015b8d78980ef3364a0bbbe2c514e192d5e7a35da4d7b53 |
container_end_page | 19 |
container_issue | 1 |
container_start_page | 9415 |
container_title | Nature communications |
container_volume | 15 |
creator | Dominique, Carine Maiga, Nana Kadidia Méndez-Godoy, Alfonso Pillet, Benjamin Hamze, Hussein Léger-Silvestre, Isabelle Henry, Yves Marchand, Virginie Gomes Neto, Valdir Dez, Christophe Motorin, Yuri Kressler, Dieter Gadal, Olivier Henras, Anthony K. Albert, Benjamin |
description | Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (snoRNPs) from protists to mammalian cells. We show in
Saccharomyces cerevisiae
that the electrostatic properties of this lysine-rich IDR, the KKE/D domain, promote snoRNP accumulation in the vicinity of nascent rRNAs, facilitating their modification. Under stress conditions reducing the rate of ribosome assembly, they are essential for nucleolar compaction and sequestration of key early-acting ribosome biogenesis factors, including RNA polymerase I, owing to their self-interaction capacity in a latent, non-rRNA-associated state. We propose that such functional plasticity of these lysine-rich IDRs may represent an ancestral eukaryotic regulatory mechanism, explaining how nucleolar morphology is continuously adapted to rRNA production levels.
Here, the authors unveil the evolutionary conservation of lysine-rich IDRs of snoRNPs that mediate both efficient rRNA modification during active ribosome production and nucleolar compaction when ribosome synthesis declines and snoRNPs accumulate in latent state. |
doi_str_mv | 10.1038/s41467-024-53805-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3e0b6ba17fdf4c31a03390088eaa8124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e0b6ba17fdf4c31a03390088eaa8124</doaj_id><sourcerecordid>3122902586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-5400244ebeefa1ffc4015b8d78980ef3364a0bbbe2c514e192d5e7a35da4d7b53</originalsourceid><addsrcrecordid>eNp9kktv1DAQgCMEolXpH-CALHGBQ8CvbJzjqoK20qqgqpytiT3uepXYi72p1H-P07TlccAH2xp__jwaT1W9ZfQTo0J9zpLJVVtTLutGKNrU7EV1zKlkNWu5ePnH_qg6zXlHyxAdU1K-ro5EJxUXtD2utjdbJHaCgQzeIYmOWJ9jspjQkuE--4B18mZLbBzBhzwTOcTrq--Z-EDS9dWajNF65w0cfAwEgiVhMgPGARIxcdyDmQ_eVK8cDBlPH9eT6sfXLzdnF_Xm2_nl2XpTG0npoW7KzKXEHtEBc65EWdMr26pOUXRCrCTQvu-Rm4ZJZB23DbYgGgvStn0jTqrLxWsj7PQ--RHSvY7g9UMgplsN6eBLglog7Vc9sNZZJ41gQIXoKFUKARTjsrg-Lq4tDH-pLtYbPceobLuWcXrHCvthYfcp_pwwH_Tos8FhgIBxylqwueCSiRl9_w-6i1MKpSozxTvKG7UqFF8ok2LOCd1zBozquQX00gK61Es_tICe1e8e1VM_on2-8vThBRALkMtRuMX0--3_aH8Bz-650A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122902586</pqid></control><display><type>article</type><title>The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Dominique, Carine ; Maiga, Nana Kadidia ; Méndez-Godoy, Alfonso ; Pillet, Benjamin ; Hamze, Hussein ; Léger-Silvestre, Isabelle ; Henry, Yves ; Marchand, Virginie ; Gomes Neto, Valdir ; Dez, Christophe ; Motorin, Yuri ; Kressler, Dieter ; Gadal, Olivier ; Henras, Anthony K. ; Albert, Benjamin</creator><creatorcontrib>Dominique, Carine ; Maiga, Nana Kadidia ; Méndez-Godoy, Alfonso ; Pillet, Benjamin ; Hamze, Hussein ; Léger-Silvestre, Isabelle ; Henry, Yves ; Marchand, Virginie ; Gomes Neto, Valdir ; Dez, Christophe ; Motorin, Yuri ; Kressler, Dieter ; Gadal, Olivier ; Henras, Anthony K. ; Albert, Benjamin</creatorcontrib><description>Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (snoRNPs) from protists to mammalian cells. We show in
Saccharomyces cerevisiae
that the electrostatic properties of this lysine-rich IDR, the KKE/D domain, promote snoRNP accumulation in the vicinity of nascent rRNAs, facilitating their modification. Under stress conditions reducing the rate of ribosome assembly, they are essential for nucleolar compaction and sequestration of key early-acting ribosome biogenesis factors, including RNA polymerase I, owing to their self-interaction capacity in a latent, non-rRNA-associated state. We propose that such functional plasticity of these lysine-rich IDRs may represent an ancestral eukaryotic regulatory mechanism, explaining how nucleolar morphology is continuously adapted to rRNA production levels.
Here, the authors unveil the evolutionary conservation of lysine-rich IDRs of snoRNPs that mediate both efficient rRNA modification during active ribosome production and nucleolar compaction when ribosome synthesis declines and snoRNPs accumulate in latent state.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-53805-1</identifier><identifier>PMID: 39482307</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/28 ; 14/35 ; 38 ; 38/15 ; 38/90 ; 45/29 ; 45/71 ; 631/337/1645/2570 ; 631/337/384 ; 631/80/386/1362 ; 631/80/386/2383 ; 82/111 ; Assembly ; Cell Nucleolus - metabolism ; Compaction ; DNA-directed RNA polymerase ; Electrostatic properties ; Evolutionary conservation ; Functional plasticity ; Humanities and Social Sciences ; Humans ; Intrinsically Disordered Proteins - chemistry ; Intrinsically Disordered Proteins - genetics ; Intrinsically Disordered Proteins - metabolism ; Life Sciences ; Lysine ; Lysine - chemistry ; Lysine - metabolism ; Mammalian cells ; multidisciplinary ; Nucleoli ; Protein Domains ; Proteomes ; Regulatory mechanisms (biology) ; Ribonucleic acid ; Ribonucleoproteins (small nucleolar) ; Ribonucleoproteins, Small Nucleolar - genetics ; Ribonucleoproteins, Small Nucleolar - metabolism ; Ribosomes - metabolism ; RNA ; RNA modification ; RNA polymerase ; RNA Polymerase I - genetics ; RNA Polymerase I - metabolism ; RNA, Ribosomal - chemistry ; RNA, Ribosomal - genetics ; RNA, Ribosomal - metabolism ; rRNA ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2024-10, Vol.15 (1), p.9415-19, Article 9415</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-5400244ebeefa1ffc4015b8d78980ef3364a0bbbe2c514e192d5e7a35da4d7b53</cites><orcidid>0000-0001-9421-0831 ; 0009-0009-4200-0854 ; 0000-0003-4855-3563 ; 0009-0002-7737-0280 ; 0000-0002-7313-4304 ; 0000-0001-7785-9938 ; 0000-0003-2122-6458 ; 0000-0002-8537-1139 ; 0000-0002-9412-4930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3122902586/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3122902586?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39482307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04797120$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dominique, Carine</creatorcontrib><creatorcontrib>Maiga, Nana Kadidia</creatorcontrib><creatorcontrib>Méndez-Godoy, Alfonso</creatorcontrib><creatorcontrib>Pillet, Benjamin</creatorcontrib><creatorcontrib>Hamze, Hussein</creatorcontrib><creatorcontrib>Léger-Silvestre, Isabelle</creatorcontrib><creatorcontrib>Henry, Yves</creatorcontrib><creatorcontrib>Marchand, Virginie</creatorcontrib><creatorcontrib>Gomes Neto, Valdir</creatorcontrib><creatorcontrib>Dez, Christophe</creatorcontrib><creatorcontrib>Motorin, Yuri</creatorcontrib><creatorcontrib>Kressler, Dieter</creatorcontrib><creatorcontrib>Gadal, Olivier</creatorcontrib><creatorcontrib>Henras, Anthony K.</creatorcontrib><creatorcontrib>Albert, Benjamin</creatorcontrib><title>The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (snoRNPs) from protists to mammalian cells. We show in
Saccharomyces cerevisiae
that the electrostatic properties of this lysine-rich IDR, the KKE/D domain, promote snoRNP accumulation in the vicinity of nascent rRNAs, facilitating their modification. Under stress conditions reducing the rate of ribosome assembly, they are essential for nucleolar compaction and sequestration of key early-acting ribosome biogenesis factors, including RNA polymerase I, owing to their self-interaction capacity in a latent, non-rRNA-associated state. We propose that such functional plasticity of these lysine-rich IDRs may represent an ancestral eukaryotic regulatory mechanism, explaining how nucleolar morphology is continuously adapted to rRNA production levels.
Here, the authors unveil the evolutionary conservation of lysine-rich IDRs of snoRNPs that mediate both efficient rRNA modification during active ribosome production and nucleolar compaction when ribosome synthesis declines and snoRNPs accumulate in latent state.</description><subject>14</subject><subject>14/28</subject><subject>14/35</subject><subject>38</subject><subject>38/15</subject><subject>38/90</subject><subject>45/29</subject><subject>45/71</subject><subject>631/337/1645/2570</subject><subject>631/337/384</subject><subject>631/80/386/1362</subject><subject>631/80/386/2383</subject><subject>82/111</subject><subject>Assembly</subject><subject>Cell Nucleolus - metabolism</subject><subject>Compaction</subject><subject>DNA-directed RNA polymerase</subject><subject>Electrostatic properties</subject><subject>Evolutionary conservation</subject><subject>Functional plasticity</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Intrinsically Disordered Proteins - genetics</subject><subject>Intrinsically Disordered Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Lysine</subject><subject>Lysine - chemistry</subject><subject>Lysine - metabolism</subject><subject>Mammalian cells</subject><subject>multidisciplinary</subject><subject>Nucleoli</subject><subject>Protein Domains</subject><subject>Proteomes</subject><subject>Regulatory mechanisms (biology)</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoproteins (small nucleolar)</subject><subject>Ribonucleoproteins, Small Nucleolar - genetics</subject><subject>Ribonucleoproteins, Small Nucleolar - metabolism</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA modification</subject><subject>RNA polymerase</subject><subject>RNA Polymerase I - genetics</subject><subject>RNA Polymerase I - metabolism</subject><subject>RNA, Ribosomal - chemistry</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal - metabolism</subject><subject>rRNA</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAQgCMEolXpH-CALHGBQ8CvbJzjqoK20qqgqpytiT3uepXYi72p1H-P07TlccAH2xp__jwaT1W9ZfQTo0J9zpLJVVtTLutGKNrU7EV1zKlkNWu5ePnH_qg6zXlHyxAdU1K-ro5EJxUXtD2utjdbJHaCgQzeIYmOWJ9jspjQkuE--4B18mZLbBzBhzwTOcTrq--Z-EDS9dWajNF65w0cfAwEgiVhMgPGARIxcdyDmQ_eVK8cDBlPH9eT6sfXLzdnF_Xm2_nl2XpTG0npoW7KzKXEHtEBc65EWdMr26pOUXRCrCTQvu-Rm4ZJZB23DbYgGgvStn0jTqrLxWsj7PQ--RHSvY7g9UMgplsN6eBLglog7Vc9sNZZJ41gQIXoKFUKARTjsrg-Lq4tDH-pLtYbPceobLuWcXrHCvthYfcp_pwwH_Tos8FhgIBxylqwueCSiRl9_w-6i1MKpSozxTvKG7UqFF8ok2LOCd1zBozquQX00gK61Es_tICe1e8e1VM_on2-8vThBRALkMtRuMX0--3_aH8Bz-650A</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Dominique, Carine</creator><creator>Maiga, Nana Kadidia</creator><creator>Méndez-Godoy, Alfonso</creator><creator>Pillet, Benjamin</creator><creator>Hamze, Hussein</creator><creator>Léger-Silvestre, Isabelle</creator><creator>Henry, Yves</creator><creator>Marchand, Virginie</creator><creator>Gomes Neto, Valdir</creator><creator>Dez, Christophe</creator><creator>Motorin, Yuri</creator><creator>Kressler, Dieter</creator><creator>Gadal, Olivier</creator><creator>Henras, Anthony K.</creator><creator>Albert, Benjamin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9421-0831</orcidid><orcidid>https://orcid.org/0009-0009-4200-0854</orcidid><orcidid>https://orcid.org/0000-0003-4855-3563</orcidid><orcidid>https://orcid.org/0009-0002-7737-0280</orcidid><orcidid>https://orcid.org/0000-0002-7313-4304</orcidid><orcidid>https://orcid.org/0000-0001-7785-9938</orcidid><orcidid>https://orcid.org/0000-0003-2122-6458</orcidid><orcidid>https://orcid.org/0000-0002-8537-1139</orcidid><orcidid>https://orcid.org/0000-0002-9412-4930</orcidid></search><sort><creationdate>20241031</creationdate><title>The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction</title><author>Dominique, Carine ; Maiga, Nana Kadidia ; Méndez-Godoy, Alfonso ; Pillet, Benjamin ; Hamze, Hussein ; Léger-Silvestre, Isabelle ; Henry, Yves ; Marchand, Virginie ; Gomes Neto, Valdir ; Dez, Christophe ; Motorin, Yuri ; Kressler, Dieter ; Gadal, Olivier ; Henras, Anthony K. ; Albert, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-5400244ebeefa1ffc4015b8d78980ef3364a0bbbe2c514e192d5e7a35da4d7b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14</topic><topic>14/28</topic><topic>14/35</topic><topic>38</topic><topic>38/15</topic><topic>38/90</topic><topic>45/29</topic><topic>45/71</topic><topic>631/337/1645/2570</topic><topic>631/337/384</topic><topic>631/80/386/1362</topic><topic>631/80/386/2383</topic><topic>82/111</topic><topic>Assembly</topic><topic>Cell Nucleolus - metabolism</topic><topic>Compaction</topic><topic>DNA-directed RNA polymerase</topic><topic>Electrostatic properties</topic><topic>Evolutionary conservation</topic><topic>Functional plasticity</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Intrinsically Disordered Proteins - genetics</topic><topic>Intrinsically Disordered Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Lysine</topic><topic>Lysine - chemistry</topic><topic>Lysine - metabolism</topic><topic>Mammalian cells</topic><topic>multidisciplinary</topic><topic>Nucleoli</topic><topic>Protein Domains</topic><topic>Proteomes</topic><topic>Regulatory mechanisms (biology)</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoproteins (small nucleolar)</topic><topic>Ribonucleoproteins, Small Nucleolar - genetics</topic><topic>Ribonucleoproteins, Small Nucleolar - metabolism</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA modification</topic><topic>RNA polymerase</topic><topic>RNA Polymerase I - genetics</topic><topic>RNA Polymerase I - metabolism</topic><topic>RNA, Ribosomal - chemistry</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal - metabolism</topic><topic>rRNA</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dominique, Carine</creatorcontrib><creatorcontrib>Maiga, Nana Kadidia</creatorcontrib><creatorcontrib>Méndez-Godoy, Alfonso</creatorcontrib><creatorcontrib>Pillet, Benjamin</creatorcontrib><creatorcontrib>Hamze, Hussein</creatorcontrib><creatorcontrib>Léger-Silvestre, Isabelle</creatorcontrib><creatorcontrib>Henry, Yves</creatorcontrib><creatorcontrib>Marchand, Virginie</creatorcontrib><creatorcontrib>Gomes Neto, Valdir</creatorcontrib><creatorcontrib>Dez, Christophe</creatorcontrib><creatorcontrib>Motorin, Yuri</creatorcontrib><creatorcontrib>Kressler, Dieter</creatorcontrib><creatorcontrib>Gadal, Olivier</creatorcontrib><creatorcontrib>Henras, Anthony K.</creatorcontrib><creatorcontrib>Albert, Benjamin</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dominique, Carine</au><au>Maiga, Nana Kadidia</au><au>Méndez-Godoy, Alfonso</au><au>Pillet, Benjamin</au><au>Hamze, Hussein</au><au>Léger-Silvestre, Isabelle</au><au>Henry, Yves</au><au>Marchand, Virginie</au><au>Gomes Neto, Valdir</au><au>Dez, Christophe</au><au>Motorin, Yuri</au><au>Kressler, Dieter</au><au>Gadal, Olivier</au><au>Henras, Anthony K.</au><au>Albert, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-10-31</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>9415</spage><epage>19</epage><pages>9415-19</pages><artnum>9415</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (snoRNPs) from protists to mammalian cells. We show in
Saccharomyces cerevisiae
that the electrostatic properties of this lysine-rich IDR, the KKE/D domain, promote snoRNP accumulation in the vicinity of nascent rRNAs, facilitating their modification. Under stress conditions reducing the rate of ribosome assembly, they are essential for nucleolar compaction and sequestration of key early-acting ribosome biogenesis factors, including RNA polymerase I, owing to their self-interaction capacity in a latent, non-rRNA-associated state. We propose that such functional plasticity of these lysine-rich IDRs may represent an ancestral eukaryotic regulatory mechanism, explaining how nucleolar morphology is continuously adapted to rRNA production levels.
Here, the authors unveil the evolutionary conservation of lysine-rich IDRs of snoRNPs that mediate both efficient rRNA modification during active ribosome production and nucleolar compaction when ribosome synthesis declines and snoRNPs accumulate in latent state.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39482307</pmid><doi>10.1038/s41467-024-53805-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9421-0831</orcidid><orcidid>https://orcid.org/0009-0009-4200-0854</orcidid><orcidid>https://orcid.org/0000-0003-4855-3563</orcidid><orcidid>https://orcid.org/0009-0002-7737-0280</orcidid><orcidid>https://orcid.org/0000-0002-7313-4304</orcidid><orcidid>https://orcid.org/0000-0001-7785-9938</orcidid><orcidid>https://orcid.org/0000-0003-2122-6458</orcidid><orcidid>https://orcid.org/0000-0002-8537-1139</orcidid><orcidid>https://orcid.org/0000-0002-9412-4930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-10, Vol.15 (1), p.9415-19, Article 9415 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3e0b6ba17fdf4c31a03390088eaa8124 |
source | Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 14 14/28 14/35 38 38/15 38/90 45/29 45/71 631/337/1645/2570 631/337/384 631/80/386/1362 631/80/386/2383 82/111 Assembly Cell Nucleolus - metabolism Compaction DNA-directed RNA polymerase Electrostatic properties Evolutionary conservation Functional plasticity Humanities and Social Sciences Humans Intrinsically Disordered Proteins - chemistry Intrinsically Disordered Proteins - genetics Intrinsically Disordered Proteins - metabolism Life Sciences Lysine Lysine - chemistry Lysine - metabolism Mammalian cells multidisciplinary Nucleoli Protein Domains Proteomes Regulatory mechanisms (biology) Ribonucleic acid Ribonucleoproteins (small nucleolar) Ribonucleoproteins, Small Nucleolar - genetics Ribonucleoproteins, Small Nucleolar - metabolism Ribosomes - metabolism RNA RNA modification RNA polymerase RNA Polymerase I - genetics RNA Polymerase I - metabolism RNA, Ribosomal - chemistry RNA, Ribosomal - genetics RNA, Ribosomal - metabolism rRNA Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Science Science (multidisciplinary) |
title | The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dual%20life%20of%20disordered%20lysine-rich%20domains%20of%20snoRNPs%20in%20rRNA%20modification%20and%20nucleolar%20compaction&rft.jtitle=Nature%20communications&rft.au=Dominique,%20Carine&rft.date=2024-10-31&rft.volume=15&rft.issue=1&rft.spage=9415&rft.epage=19&rft.pages=9415-19&rft.artnum=9415&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-53805-1&rft_dat=%3Cproquest_doaj_%3E3122902586%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-5400244ebeefa1ffc4015b8d78980ef3364a0bbbe2c514e192d5e7a35da4d7b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122902586&rft_id=info:pmid/39482307&rfr_iscdi=true |