Loading…

The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction

Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (sn...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-10, Vol.15 (1), p.9415-19, Article 9415
Main Authors: Dominique, Carine, Maiga, Nana Kadidia, Méndez-Godoy, Alfonso, Pillet, Benjamin, Hamze, Hussein, Léger-Silvestre, Isabelle, Henry, Yves, Marchand, Virginie, Gomes Neto, Valdir, Dez, Christophe, Motorin, Yuri, Kressler, Dieter, Gadal, Olivier, Henras, Anthony K., Albert, Benjamin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c400t-5400244ebeefa1ffc4015b8d78980ef3364a0bbbe2c514e192d5e7a35da4d7b53
container_end_page 19
container_issue 1
container_start_page 9415
container_title Nature communications
container_volume 15
creator Dominique, Carine
Maiga, Nana Kadidia
Méndez-Godoy, Alfonso
Pillet, Benjamin
Hamze, Hussein
Léger-Silvestre, Isabelle
Henry, Yves
Marchand, Virginie
Gomes Neto, Valdir
Dez, Christophe
Motorin, Yuri
Kressler, Dieter
Gadal, Olivier
Henras, Anthony K.
Albert, Benjamin
description Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (snoRNPs) from protists to mammalian cells. We show in Saccharomyces cerevisiae that the electrostatic properties of this lysine-rich IDR, the KKE/D domain, promote snoRNP accumulation in the vicinity of nascent rRNAs, facilitating their modification. Under stress conditions reducing the rate of ribosome assembly, they are essential for nucleolar compaction and sequestration of key early-acting ribosome biogenesis factors, including RNA polymerase I, owing to their self-interaction capacity in a latent, non-rRNA-associated state. We propose that such functional plasticity of these lysine-rich IDRs may represent an ancestral eukaryotic regulatory mechanism, explaining how nucleolar morphology is continuously adapted to rRNA production levels. Here, the authors unveil the evolutionary conservation of lysine-rich IDRs of snoRNPs that mediate both efficient rRNA modification during active ribosome production and nucleolar compaction when ribosome synthesis declines and snoRNPs accumulate in latent state.
doi_str_mv 10.1038/s41467-024-53805-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3e0b6ba17fdf4c31a03390088eaa8124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e0b6ba17fdf4c31a03390088eaa8124</doaj_id><sourcerecordid>3122902586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-5400244ebeefa1ffc4015b8d78980ef3364a0bbbe2c514e192d5e7a35da4d7b53</originalsourceid><addsrcrecordid>eNp9kktv1DAQgCMEolXpH-CALHGBQ8CvbJzjqoK20qqgqpytiT3uepXYi72p1H-P07TlccAH2xp__jwaT1W9ZfQTo0J9zpLJVVtTLutGKNrU7EV1zKlkNWu5ePnH_qg6zXlHyxAdU1K-ro5EJxUXtD2utjdbJHaCgQzeIYmOWJ9jspjQkuE--4B18mZLbBzBhzwTOcTrq--Z-EDS9dWajNF65w0cfAwEgiVhMgPGARIxcdyDmQ_eVK8cDBlPH9eT6sfXLzdnF_Xm2_nl2XpTG0npoW7KzKXEHtEBc65EWdMr26pOUXRCrCTQvu-Rm4ZJZB23DbYgGgvStn0jTqrLxWsj7PQ--RHSvY7g9UMgplsN6eBLglog7Vc9sNZZJ41gQIXoKFUKARTjsrg-Lq4tDH-pLtYbPceobLuWcXrHCvthYfcp_pwwH_Tos8FhgIBxylqwueCSiRl9_w-6i1MKpSozxTvKG7UqFF8ok2LOCd1zBozquQX00gK61Es_tICe1e8e1VM_on2-8vThBRALkMtRuMX0--3_aH8Bz-650A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122902586</pqid></control><display><type>article</type><title>The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Dominique, Carine ; Maiga, Nana Kadidia ; Méndez-Godoy, Alfonso ; Pillet, Benjamin ; Hamze, Hussein ; Léger-Silvestre, Isabelle ; Henry, Yves ; Marchand, Virginie ; Gomes Neto, Valdir ; Dez, Christophe ; Motorin, Yuri ; Kressler, Dieter ; Gadal, Olivier ; Henras, Anthony K. ; Albert, Benjamin</creator><creatorcontrib>Dominique, Carine ; Maiga, Nana Kadidia ; Méndez-Godoy, Alfonso ; Pillet, Benjamin ; Hamze, Hussein ; Léger-Silvestre, Isabelle ; Henry, Yves ; Marchand, Virginie ; Gomes Neto, Valdir ; Dez, Christophe ; Motorin, Yuri ; Kressler, Dieter ; Gadal, Olivier ; Henras, Anthony K. ; Albert, Benjamin</creatorcontrib><description>Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (snoRNPs) from protists to mammalian cells. We show in Saccharomyces cerevisiae that the electrostatic properties of this lysine-rich IDR, the KKE/D domain, promote snoRNP accumulation in the vicinity of nascent rRNAs, facilitating their modification. Under stress conditions reducing the rate of ribosome assembly, they are essential for nucleolar compaction and sequestration of key early-acting ribosome biogenesis factors, including RNA polymerase I, owing to their self-interaction capacity in a latent, non-rRNA-associated state. We propose that such functional plasticity of these lysine-rich IDRs may represent an ancestral eukaryotic regulatory mechanism, explaining how nucleolar morphology is continuously adapted to rRNA production levels. Here, the authors unveil the evolutionary conservation of lysine-rich IDRs of snoRNPs that mediate both efficient rRNA modification during active ribosome production and nucleolar compaction when ribosome synthesis declines and snoRNPs accumulate in latent state.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-53805-1</identifier><identifier>PMID: 39482307</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/28 ; 14/35 ; 38 ; 38/15 ; 38/90 ; 45/29 ; 45/71 ; 631/337/1645/2570 ; 631/337/384 ; 631/80/386/1362 ; 631/80/386/2383 ; 82/111 ; Assembly ; Cell Nucleolus - metabolism ; Compaction ; DNA-directed RNA polymerase ; Electrostatic properties ; Evolutionary conservation ; Functional plasticity ; Humanities and Social Sciences ; Humans ; Intrinsically Disordered Proteins - chemistry ; Intrinsically Disordered Proteins - genetics ; Intrinsically Disordered Proteins - metabolism ; Life Sciences ; Lysine ; Lysine - chemistry ; Lysine - metabolism ; Mammalian cells ; multidisciplinary ; Nucleoli ; Protein Domains ; Proteomes ; Regulatory mechanisms (biology) ; Ribonucleic acid ; Ribonucleoproteins (small nucleolar) ; Ribonucleoproteins, Small Nucleolar - genetics ; Ribonucleoproteins, Small Nucleolar - metabolism ; Ribosomes - metabolism ; RNA ; RNA modification ; RNA polymerase ; RNA Polymerase I - genetics ; RNA Polymerase I - metabolism ; RNA, Ribosomal - chemistry ; RNA, Ribosomal - genetics ; RNA, Ribosomal - metabolism ; rRNA ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2024-10, Vol.15 (1), p.9415-19, Article 9415</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-5400244ebeefa1ffc4015b8d78980ef3364a0bbbe2c514e192d5e7a35da4d7b53</cites><orcidid>0000-0001-9421-0831 ; 0009-0009-4200-0854 ; 0000-0003-4855-3563 ; 0009-0002-7737-0280 ; 0000-0002-7313-4304 ; 0000-0001-7785-9938 ; 0000-0003-2122-6458 ; 0000-0002-8537-1139 ; 0000-0002-9412-4930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3122902586/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3122902586?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39482307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04797120$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dominique, Carine</creatorcontrib><creatorcontrib>Maiga, Nana Kadidia</creatorcontrib><creatorcontrib>Méndez-Godoy, Alfonso</creatorcontrib><creatorcontrib>Pillet, Benjamin</creatorcontrib><creatorcontrib>Hamze, Hussein</creatorcontrib><creatorcontrib>Léger-Silvestre, Isabelle</creatorcontrib><creatorcontrib>Henry, Yves</creatorcontrib><creatorcontrib>Marchand, Virginie</creatorcontrib><creatorcontrib>Gomes Neto, Valdir</creatorcontrib><creatorcontrib>Dez, Christophe</creatorcontrib><creatorcontrib>Motorin, Yuri</creatorcontrib><creatorcontrib>Kressler, Dieter</creatorcontrib><creatorcontrib>Gadal, Olivier</creatorcontrib><creatorcontrib>Henras, Anthony K.</creatorcontrib><creatorcontrib>Albert, Benjamin</creatorcontrib><title>The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (snoRNPs) from protists to mammalian cells. We show in Saccharomyces cerevisiae that the electrostatic properties of this lysine-rich IDR, the KKE/D domain, promote snoRNP accumulation in the vicinity of nascent rRNAs, facilitating their modification. Under stress conditions reducing the rate of ribosome assembly, they are essential for nucleolar compaction and sequestration of key early-acting ribosome biogenesis factors, including RNA polymerase I, owing to their self-interaction capacity in a latent, non-rRNA-associated state. We propose that such functional plasticity of these lysine-rich IDRs may represent an ancestral eukaryotic regulatory mechanism, explaining how nucleolar morphology is continuously adapted to rRNA production levels. Here, the authors unveil the evolutionary conservation of lysine-rich IDRs of snoRNPs that mediate both efficient rRNA modification during active ribosome production and nucleolar compaction when ribosome synthesis declines and snoRNPs accumulate in latent state.</description><subject>14</subject><subject>14/28</subject><subject>14/35</subject><subject>38</subject><subject>38/15</subject><subject>38/90</subject><subject>45/29</subject><subject>45/71</subject><subject>631/337/1645/2570</subject><subject>631/337/384</subject><subject>631/80/386/1362</subject><subject>631/80/386/2383</subject><subject>82/111</subject><subject>Assembly</subject><subject>Cell Nucleolus - metabolism</subject><subject>Compaction</subject><subject>DNA-directed RNA polymerase</subject><subject>Electrostatic properties</subject><subject>Evolutionary conservation</subject><subject>Functional plasticity</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Intrinsically Disordered Proteins - genetics</subject><subject>Intrinsically Disordered Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Lysine</subject><subject>Lysine - chemistry</subject><subject>Lysine - metabolism</subject><subject>Mammalian cells</subject><subject>multidisciplinary</subject><subject>Nucleoli</subject><subject>Protein Domains</subject><subject>Proteomes</subject><subject>Regulatory mechanisms (biology)</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoproteins (small nucleolar)</subject><subject>Ribonucleoproteins, Small Nucleolar - genetics</subject><subject>Ribonucleoproteins, Small Nucleolar - metabolism</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA modification</subject><subject>RNA polymerase</subject><subject>RNA Polymerase I - genetics</subject><subject>RNA Polymerase I - metabolism</subject><subject>RNA, Ribosomal - chemistry</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal - metabolism</subject><subject>rRNA</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAQgCMEolXpH-CALHGBQ8CvbJzjqoK20qqgqpytiT3uepXYi72p1H-P07TlccAH2xp__jwaT1W9ZfQTo0J9zpLJVVtTLutGKNrU7EV1zKlkNWu5ePnH_qg6zXlHyxAdU1K-ro5EJxUXtD2utjdbJHaCgQzeIYmOWJ9jspjQkuE--4B18mZLbBzBhzwTOcTrq--Z-EDS9dWajNF65w0cfAwEgiVhMgPGARIxcdyDmQ_eVK8cDBlPH9eT6sfXLzdnF_Xm2_nl2XpTG0npoW7KzKXEHtEBc65EWdMr26pOUXRCrCTQvu-Rm4ZJZB23DbYgGgvStn0jTqrLxWsj7PQ--RHSvY7g9UMgplsN6eBLglog7Vc9sNZZJ41gQIXoKFUKARTjsrg-Lq4tDH-pLtYbPceobLuWcXrHCvthYfcp_pwwH_Tos8FhgIBxylqwueCSiRl9_w-6i1MKpSozxTvKG7UqFF8ok2LOCd1zBozquQX00gK61Es_tICe1e8e1VM_on2-8vThBRALkMtRuMX0--3_aH8Bz-650A</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Dominique, Carine</creator><creator>Maiga, Nana Kadidia</creator><creator>Méndez-Godoy, Alfonso</creator><creator>Pillet, Benjamin</creator><creator>Hamze, Hussein</creator><creator>Léger-Silvestre, Isabelle</creator><creator>Henry, Yves</creator><creator>Marchand, Virginie</creator><creator>Gomes Neto, Valdir</creator><creator>Dez, Christophe</creator><creator>Motorin, Yuri</creator><creator>Kressler, Dieter</creator><creator>Gadal, Olivier</creator><creator>Henras, Anthony K.</creator><creator>Albert, Benjamin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9421-0831</orcidid><orcidid>https://orcid.org/0009-0009-4200-0854</orcidid><orcidid>https://orcid.org/0000-0003-4855-3563</orcidid><orcidid>https://orcid.org/0009-0002-7737-0280</orcidid><orcidid>https://orcid.org/0000-0002-7313-4304</orcidid><orcidid>https://orcid.org/0000-0001-7785-9938</orcidid><orcidid>https://orcid.org/0000-0003-2122-6458</orcidid><orcidid>https://orcid.org/0000-0002-8537-1139</orcidid><orcidid>https://orcid.org/0000-0002-9412-4930</orcidid></search><sort><creationdate>20241031</creationdate><title>The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction</title><author>Dominique, Carine ; Maiga, Nana Kadidia ; Méndez-Godoy, Alfonso ; Pillet, Benjamin ; Hamze, Hussein ; Léger-Silvestre, Isabelle ; Henry, Yves ; Marchand, Virginie ; Gomes Neto, Valdir ; Dez, Christophe ; Motorin, Yuri ; Kressler, Dieter ; Gadal, Olivier ; Henras, Anthony K. ; Albert, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-5400244ebeefa1ffc4015b8d78980ef3364a0bbbe2c514e192d5e7a35da4d7b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14</topic><topic>14/28</topic><topic>14/35</topic><topic>38</topic><topic>38/15</topic><topic>38/90</topic><topic>45/29</topic><topic>45/71</topic><topic>631/337/1645/2570</topic><topic>631/337/384</topic><topic>631/80/386/1362</topic><topic>631/80/386/2383</topic><topic>82/111</topic><topic>Assembly</topic><topic>Cell Nucleolus - metabolism</topic><topic>Compaction</topic><topic>DNA-directed RNA polymerase</topic><topic>Electrostatic properties</topic><topic>Evolutionary conservation</topic><topic>Functional plasticity</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Intrinsically Disordered Proteins - genetics</topic><topic>Intrinsically Disordered Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Lysine</topic><topic>Lysine - chemistry</topic><topic>Lysine - metabolism</topic><topic>Mammalian cells</topic><topic>multidisciplinary</topic><topic>Nucleoli</topic><topic>Protein Domains</topic><topic>Proteomes</topic><topic>Regulatory mechanisms (biology)</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoproteins (small nucleolar)</topic><topic>Ribonucleoproteins, Small Nucleolar - genetics</topic><topic>Ribonucleoproteins, Small Nucleolar - metabolism</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA modification</topic><topic>RNA polymerase</topic><topic>RNA Polymerase I - genetics</topic><topic>RNA Polymerase I - metabolism</topic><topic>RNA, Ribosomal - chemistry</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal - metabolism</topic><topic>rRNA</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dominique, Carine</creatorcontrib><creatorcontrib>Maiga, Nana Kadidia</creatorcontrib><creatorcontrib>Méndez-Godoy, Alfonso</creatorcontrib><creatorcontrib>Pillet, Benjamin</creatorcontrib><creatorcontrib>Hamze, Hussein</creatorcontrib><creatorcontrib>Léger-Silvestre, Isabelle</creatorcontrib><creatorcontrib>Henry, Yves</creatorcontrib><creatorcontrib>Marchand, Virginie</creatorcontrib><creatorcontrib>Gomes Neto, Valdir</creatorcontrib><creatorcontrib>Dez, Christophe</creatorcontrib><creatorcontrib>Motorin, Yuri</creatorcontrib><creatorcontrib>Kressler, Dieter</creatorcontrib><creatorcontrib>Gadal, Olivier</creatorcontrib><creatorcontrib>Henras, Anthony K.</creatorcontrib><creatorcontrib>Albert, Benjamin</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dominique, Carine</au><au>Maiga, Nana Kadidia</au><au>Méndez-Godoy, Alfonso</au><au>Pillet, Benjamin</au><au>Hamze, Hussein</au><au>Léger-Silvestre, Isabelle</au><au>Henry, Yves</au><au>Marchand, Virginie</au><au>Gomes Neto, Valdir</au><au>Dez, Christophe</au><au>Motorin, Yuri</au><au>Kressler, Dieter</au><au>Gadal, Olivier</au><au>Henras, Anthony K.</au><au>Albert, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-10-31</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>9415</spage><epage>19</epage><pages>9415-19</pages><artnum>9415</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (snoRNPs) from protists to mammalian cells. We show in Saccharomyces cerevisiae that the electrostatic properties of this lysine-rich IDR, the KKE/D domain, promote snoRNP accumulation in the vicinity of nascent rRNAs, facilitating their modification. Under stress conditions reducing the rate of ribosome assembly, they are essential for nucleolar compaction and sequestration of key early-acting ribosome biogenesis factors, including RNA polymerase I, owing to their self-interaction capacity in a latent, non-rRNA-associated state. We propose that such functional plasticity of these lysine-rich IDRs may represent an ancestral eukaryotic regulatory mechanism, explaining how nucleolar morphology is continuously adapted to rRNA production levels. Here, the authors unveil the evolutionary conservation of lysine-rich IDRs of snoRNPs that mediate both efficient rRNA modification during active ribosome production and nucleolar compaction when ribosome synthesis declines and snoRNPs accumulate in latent state.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39482307</pmid><doi>10.1038/s41467-024-53805-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9421-0831</orcidid><orcidid>https://orcid.org/0009-0009-4200-0854</orcidid><orcidid>https://orcid.org/0000-0003-4855-3563</orcidid><orcidid>https://orcid.org/0009-0002-7737-0280</orcidid><orcidid>https://orcid.org/0000-0002-7313-4304</orcidid><orcidid>https://orcid.org/0000-0001-7785-9938</orcidid><orcidid>https://orcid.org/0000-0003-2122-6458</orcidid><orcidid>https://orcid.org/0000-0002-8537-1139</orcidid><orcidid>https://orcid.org/0000-0002-9412-4930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-10, Vol.15 (1), p.9415-19, Article 9415
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3e0b6ba17fdf4c31a03390088eaa8124
source Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 14
14/28
14/35
38
38/15
38/90
45/29
45/71
631/337/1645/2570
631/337/384
631/80/386/1362
631/80/386/2383
82/111
Assembly
Cell Nucleolus - metabolism
Compaction
DNA-directed RNA polymerase
Electrostatic properties
Evolutionary conservation
Functional plasticity
Humanities and Social Sciences
Humans
Intrinsically Disordered Proteins - chemistry
Intrinsically Disordered Proteins - genetics
Intrinsically Disordered Proteins - metabolism
Life Sciences
Lysine
Lysine - chemistry
Lysine - metabolism
Mammalian cells
multidisciplinary
Nucleoli
Protein Domains
Proteomes
Regulatory mechanisms (biology)
Ribonucleic acid
Ribonucleoproteins (small nucleolar)
Ribonucleoproteins, Small Nucleolar - genetics
Ribonucleoproteins, Small Nucleolar - metabolism
Ribosomes - metabolism
RNA
RNA modification
RNA polymerase
RNA Polymerase I - genetics
RNA Polymerase I - metabolism
RNA, Ribosomal - chemistry
RNA, Ribosomal - genetics
RNA, Ribosomal - metabolism
rRNA
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Science
Science (multidisciplinary)
title The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dual%20life%20of%20disordered%20lysine-rich%20domains%20of%20snoRNPs%20in%20rRNA%20modification%20and%20nucleolar%20compaction&rft.jtitle=Nature%20communications&rft.au=Dominique,%20Carine&rft.date=2024-10-31&rft.volume=15&rft.issue=1&rft.spage=9415&rft.epage=19&rft.pages=9415-19&rft.artnum=9415&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-53805-1&rft_dat=%3Cproquest_doaj_%3E3122902586%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-5400244ebeefa1ffc4015b8d78980ef3364a0bbbe2c514e192d5e7a35da4d7b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122902586&rft_id=info:pmid/39482307&rfr_iscdi=true