Loading…
The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3
Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor f...
Saved in:
Published in: | Disease models & mechanisms 2012-11, Vol.5 (6), p.930-939 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13 |
container_end_page | 939 |
container_issue | 6 |
container_start_page | 930 |
container_title | Disease models & mechanisms |
container_volume | 5 |
creator | He, Liping Skirkanich, Jennifer Moronetti, Lorenza Lewis, Rosemary Lamitina, Todd |
description | Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508) results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3(wt) was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3(ΔF508) was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3(ΔF508). Efficient degradation of PGP-3(ΔF508) required the function of several C. elegans ER-associated degradation (ERAD) homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC. |
doi_str_mv | 10.1242/dmm.008987 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3e1fb6dfa21341d4bcaf429eb617d780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e1fb6dfa21341d4bcaf429eb617d780</doaj_id><sourcerecordid>2689634145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13</originalsourceid><addsrcrecordid>eNpdkttqFTEUhgdRbK3e-AAy4I0Is81pcrgR6sYeoGAv6nXIJGt2s5mZbJNMod76Cj6Xz2TaaTdWCCQkXz5WVv6qeovRChNGPrlxXCEklRTPqkMsWtZIhvHz_RrRg-pVSluEOJFUvawOCGm54oQfVr-urqG2tyl72_S-iyH51JiUgvUmg6v__D5pkazHOZvsw1TbMPUQU70LKTc5minZ6Hd3R2aoHaRsOj_4nwtcRi769aqGATaFrY-_rOv7W7sQM8T68vSyoa-rF70ZErx5mI-q7ydfr9ZnzcW30_P18UVjmSC5cT0GajETDAi2RGGLbCuMolKqlveWuBYjRpSzHadYKoqJYcohA5yAMJgeVeeL1wWz1bvoRxNvdTBe32-EuNEmlkYMoCngvuOuNwRThh3rrOmLGjqOhRMSFdfnxbWbuxGchak8a3gifXoy-Wu9CTeaMsmkYEXw4UEQw4-5NE6PPlkYBjNBmJPGmPBWSIpEQd__h27DHEvDkyZcKl4qZG2hPi6ULZ-YIvT7YjDSdznRJSd6yUmB3_1b_h59DAb9C_B5umY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689634145</pqid></control><display><type>article</type><title>The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>He, Liping ; Skirkanich, Jennifer ; Moronetti, Lorenza ; Lewis, Rosemary ; Lamitina, Todd</creator><creatorcontrib>He, Liping ; Skirkanich, Jennifer ; Moronetti, Lorenza ; Lewis, Rosemary ; Lamitina, Todd</creatorcontrib><description>Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508) results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3(wt) was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3(ΔF508) was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3(ΔF508). Efficient degradation of PGP-3(ΔF508) required the function of several C. elegans ER-associated degradation (ERAD) homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.</description><identifier>ISSN: 1754-8403</identifier><identifier>EISSN: 1754-8411</identifier><identifier>DOI: 10.1242/dmm.008987</identifier><identifier>PMID: 22569626</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>ABC transporters ; Amino acids ; Animals ; ATP Binding Cassette Transporter, Sub-Family B - genetics ; ATP Binding Cassette Transporter, Sub-Family B - metabolism ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Caenorhabditis elegans - cytology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Membrane - metabolism ; Cell Polarity ; Cystic fibrosis ; Cystic Fibrosis - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Endoplasmic Reticulum-Associated Degradation ; Enzymes ; Gene Knockdown Techniques ; Genomes ; Humans ; Mammals ; Mutation ; Mutation - genetics ; Osmotic Pressure ; Plasma ; Protein folding ; Protein Stability ; Quality control ; Research Report ; Stress, Physiological - genetics ; Transcription, Genetic ; Worms</subject><ispartof>Disease models & mechanisms, 2012-11, Vol.5 (6), p.930-939</ispartof><rights>2012. This work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012. Published by The Company of Biologists Ltd 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13</citedby><cites>FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2689634145/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2689634145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22569626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Liping</creatorcontrib><creatorcontrib>Skirkanich, Jennifer</creatorcontrib><creatorcontrib>Moronetti, Lorenza</creatorcontrib><creatorcontrib>Lewis, Rosemary</creatorcontrib><creatorcontrib>Lamitina, Todd</creatorcontrib><title>The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3</title><title>Disease models & mechanisms</title><addtitle>Dis Model Mech</addtitle><description>Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508) results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3(wt) was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3(ΔF508) was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3(ΔF508). Efficient degradation of PGP-3(ΔF508) required the function of several C. elegans ER-associated degradation (ERAD) homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.</description><subject>ABC transporters</subject><subject>Amino acids</subject><subject>Animals</subject><subject>ATP Binding Cassette Transporter, Sub-Family B - genetics</subject><subject>ATP Binding Cassette Transporter, Sub-Family B - metabolism</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Polarity</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Endoplasmic Reticulum-Associated Degradation</subject><subject>Enzymes</subject><subject>Gene Knockdown Techniques</subject><subject>Genomes</subject><subject>Humans</subject><subject>Mammals</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Osmotic Pressure</subject><subject>Plasma</subject><subject>Protein folding</subject><subject>Protein Stability</subject><subject>Quality control</subject><subject>Research Report</subject><subject>Stress, Physiological - genetics</subject><subject>Transcription, Genetic</subject><subject>Worms</subject><issn>1754-8403</issn><issn>1754-8411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkttqFTEUhgdRbK3e-AAy4I0Is81pcrgR6sYeoGAv6nXIJGt2s5mZbJNMod76Cj6Xz2TaaTdWCCQkXz5WVv6qeovRChNGPrlxXCEklRTPqkMsWtZIhvHz_RrRg-pVSluEOJFUvawOCGm54oQfVr-urqG2tyl72_S-iyH51JiUgvUmg6v__D5pkazHOZvsw1TbMPUQU70LKTc5minZ6Hd3R2aoHaRsOj_4nwtcRi769aqGATaFrY-_rOv7W7sQM8T68vSyoa-rF70ZErx5mI-q7ydfr9ZnzcW30_P18UVjmSC5cT0GajETDAi2RGGLbCuMolKqlveWuBYjRpSzHadYKoqJYcohA5yAMJgeVeeL1wWz1bvoRxNvdTBe32-EuNEmlkYMoCngvuOuNwRThh3rrOmLGjqOhRMSFdfnxbWbuxGchak8a3gifXoy-Wu9CTeaMsmkYEXw4UEQw4-5NE6PPlkYBjNBmJPGmPBWSIpEQd__h27DHEvDkyZcKl4qZG2hPi6ULZ-YIvT7YjDSdznRJSd6yUmB3_1b_h59DAb9C_B5umY</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>He, Liping</creator><creator>Skirkanich, Jennifer</creator><creator>Moronetti, Lorenza</creator><creator>Lewis, Rosemary</creator><creator>Lamitina, Todd</creator><general>The Company of Biologists Ltd</general><general>The Company of Biologists Limited</general><general>The Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121101</creationdate><title>The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3</title><author>He, Liping ; Skirkanich, Jennifer ; Moronetti, Lorenza ; Lewis, Rosemary ; Lamitina, Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ABC transporters</topic><topic>Amino acids</topic><topic>Animals</topic><topic>ATP Binding Cassette Transporter, Sub-Family B - genetics</topic><topic>ATP Binding Cassette Transporter, Sub-Family B - metabolism</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Polarity</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Endoplasmic Reticulum-Associated Degradation</topic><topic>Enzymes</topic><topic>Gene Knockdown Techniques</topic><topic>Genomes</topic><topic>Humans</topic><topic>Mammals</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Osmotic Pressure</topic><topic>Plasma</topic><topic>Protein folding</topic><topic>Protein Stability</topic><topic>Quality control</topic><topic>Research Report</topic><topic>Stress, Physiological - genetics</topic><topic>Transcription, Genetic</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Liping</creatorcontrib><creatorcontrib>Skirkanich, Jennifer</creatorcontrib><creatorcontrib>Moronetti, Lorenza</creatorcontrib><creatorcontrib>Lewis, Rosemary</creatorcontrib><creatorcontrib>Lamitina, Todd</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Disease models & mechanisms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Liping</au><au>Skirkanich, Jennifer</au><au>Moronetti, Lorenza</au><au>Lewis, Rosemary</au><au>Lamitina, Todd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3</atitle><jtitle>Disease models & mechanisms</jtitle><addtitle>Dis Model Mech</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>5</volume><issue>6</issue><spage>930</spage><epage>939</epage><pages>930-939</pages><issn>1754-8403</issn><eissn>1754-8411</eissn><abstract>Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508) results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3(wt) was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3(ΔF508) was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3(ΔF508). Efficient degradation of PGP-3(ΔF508) required the function of several C. elegans ER-associated degradation (ERAD) homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>22569626</pmid><doi>10.1242/dmm.008987</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-8403 |
ispartof | Disease models & mechanisms, 2012-11, Vol.5 (6), p.930-939 |
issn | 1754-8403 1754-8411 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3e1fb6dfa21341d4bcaf429eb617d780 |
source | Publicly Available Content Database; PubMed Central |
subjects | ABC transporters Amino acids Animals ATP Binding Cassette Transporter, Sub-Family B - genetics ATP Binding Cassette Transporter, Sub-Family B - metabolism ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - metabolism Caenorhabditis elegans - cytology Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Cell Membrane - metabolism Cell Polarity Cystic fibrosis Cystic Fibrosis - genetics Cystic Fibrosis Transmembrane Conductance Regulator - genetics Endoplasmic Reticulum-Associated Degradation Enzymes Gene Knockdown Techniques Genomes Humans Mammals Mutation Mutation - genetics Osmotic Pressure Plasma Protein folding Protein Stability Quality control Research Report Stress, Physiological - genetics Transcription, Genetic Worms |
title | The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cystic-fibrosis-associated%20%CE%94F508%20mutation%20confers%20post-transcriptional%20destabilization%20on%20the%20C.%20elegans%20ABC%20transporter%20PGP-3&rft.jtitle=Disease%20models%20&%20mechanisms&rft.au=He,%20Liping&rft.date=2012-11-01&rft.volume=5&rft.issue=6&rft.spage=930&rft.epage=939&rft.pages=930-939&rft.issn=1754-8403&rft.eissn=1754-8411&rft_id=info:doi/10.1242/dmm.008987&rft_dat=%3Cproquest_doaj_%3E2689634145%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689634145&rft_id=info:pmid/22569626&rfr_iscdi=true |