Loading…

The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3

Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor f...

Full description

Saved in:
Bibliographic Details
Published in:Disease models & mechanisms 2012-11, Vol.5 (6), p.930-939
Main Authors: He, Liping, Skirkanich, Jennifer, Moronetti, Lorenza, Lewis, Rosemary, Lamitina, Todd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13
cites cdi_FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13
container_end_page 939
container_issue 6
container_start_page 930
container_title Disease models & mechanisms
container_volume 5
creator He, Liping
Skirkanich, Jennifer
Moronetti, Lorenza
Lewis, Rosemary
Lamitina, Todd
description Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508) results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3(wt) was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3(ΔF508) was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3(ΔF508). Efficient degradation of PGP-3(ΔF508) required the function of several C. elegans ER-associated degradation (ERAD) homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.
doi_str_mv 10.1242/dmm.008987
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3e1fb6dfa21341d4bcaf429eb617d780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e1fb6dfa21341d4bcaf429eb617d780</doaj_id><sourcerecordid>2689634145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13</originalsourceid><addsrcrecordid>eNpdkttqFTEUhgdRbK3e-AAy4I0Is81pcrgR6sYeoGAv6nXIJGt2s5mZbJNMod76Cj6Xz2TaaTdWCCQkXz5WVv6qeovRChNGPrlxXCEklRTPqkMsWtZIhvHz_RrRg-pVSluEOJFUvawOCGm54oQfVr-urqG2tyl72_S-iyH51JiUgvUmg6v__D5pkazHOZvsw1TbMPUQU70LKTc5minZ6Hd3R2aoHaRsOj_4nwtcRi769aqGATaFrY-_rOv7W7sQM8T68vSyoa-rF70ZErx5mI-q7ydfr9ZnzcW30_P18UVjmSC5cT0GajETDAi2RGGLbCuMolKqlveWuBYjRpSzHadYKoqJYcohA5yAMJgeVeeL1wWz1bvoRxNvdTBe32-EuNEmlkYMoCngvuOuNwRThh3rrOmLGjqOhRMSFdfnxbWbuxGchak8a3gifXoy-Wu9CTeaMsmkYEXw4UEQw4-5NE6PPlkYBjNBmJPGmPBWSIpEQd__h27DHEvDkyZcKl4qZG2hPi6ULZ-YIvT7YjDSdznRJSd6yUmB3_1b_h59DAb9C_B5umY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689634145</pqid></control><display><type>article</type><title>The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>He, Liping ; Skirkanich, Jennifer ; Moronetti, Lorenza ; Lewis, Rosemary ; Lamitina, Todd</creator><creatorcontrib>He, Liping ; Skirkanich, Jennifer ; Moronetti, Lorenza ; Lewis, Rosemary ; Lamitina, Todd</creatorcontrib><description>Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508) results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3(wt) was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3(ΔF508) was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3(ΔF508). Efficient degradation of PGP-3(ΔF508) required the function of several C. elegans ER-associated degradation (ERAD) homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.</description><identifier>ISSN: 1754-8403</identifier><identifier>EISSN: 1754-8411</identifier><identifier>DOI: 10.1242/dmm.008987</identifier><identifier>PMID: 22569626</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>ABC transporters ; Amino acids ; Animals ; ATP Binding Cassette Transporter, Sub-Family B - genetics ; ATP Binding Cassette Transporter, Sub-Family B - metabolism ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Caenorhabditis elegans - cytology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Membrane - metabolism ; Cell Polarity ; Cystic fibrosis ; Cystic Fibrosis - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Endoplasmic Reticulum-Associated Degradation ; Enzymes ; Gene Knockdown Techniques ; Genomes ; Humans ; Mammals ; Mutation ; Mutation - genetics ; Osmotic Pressure ; Plasma ; Protein folding ; Protein Stability ; Quality control ; Research Report ; Stress, Physiological - genetics ; Transcription, Genetic ; Worms</subject><ispartof>Disease models &amp; mechanisms, 2012-11, Vol.5 (6), p.930-939</ispartof><rights>2012. This work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012. Published by The Company of Biologists Ltd 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13</citedby><cites>FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2689634145/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2689634145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22569626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Liping</creatorcontrib><creatorcontrib>Skirkanich, Jennifer</creatorcontrib><creatorcontrib>Moronetti, Lorenza</creatorcontrib><creatorcontrib>Lewis, Rosemary</creatorcontrib><creatorcontrib>Lamitina, Todd</creatorcontrib><title>The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3</title><title>Disease models &amp; mechanisms</title><addtitle>Dis Model Mech</addtitle><description>Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508) results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3(wt) was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3(ΔF508) was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3(ΔF508). Efficient degradation of PGP-3(ΔF508) required the function of several C. elegans ER-associated degradation (ERAD) homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.</description><subject>ABC transporters</subject><subject>Amino acids</subject><subject>Animals</subject><subject>ATP Binding Cassette Transporter, Sub-Family B - genetics</subject><subject>ATP Binding Cassette Transporter, Sub-Family B - metabolism</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Polarity</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Endoplasmic Reticulum-Associated Degradation</subject><subject>Enzymes</subject><subject>Gene Knockdown Techniques</subject><subject>Genomes</subject><subject>Humans</subject><subject>Mammals</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Osmotic Pressure</subject><subject>Plasma</subject><subject>Protein folding</subject><subject>Protein Stability</subject><subject>Quality control</subject><subject>Research Report</subject><subject>Stress, Physiological - genetics</subject><subject>Transcription, Genetic</subject><subject>Worms</subject><issn>1754-8403</issn><issn>1754-8411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkttqFTEUhgdRbK3e-AAy4I0Is81pcrgR6sYeoGAv6nXIJGt2s5mZbJNMod76Cj6Xz2TaaTdWCCQkXz5WVv6qeovRChNGPrlxXCEklRTPqkMsWtZIhvHz_RrRg-pVSluEOJFUvawOCGm54oQfVr-urqG2tyl72_S-iyH51JiUgvUmg6v__D5pkazHOZvsw1TbMPUQU70LKTc5minZ6Hd3R2aoHaRsOj_4nwtcRi769aqGATaFrY-_rOv7W7sQM8T68vSyoa-rF70ZErx5mI-q7ydfr9ZnzcW30_P18UVjmSC5cT0GajETDAi2RGGLbCuMolKqlveWuBYjRpSzHadYKoqJYcohA5yAMJgeVeeL1wWz1bvoRxNvdTBe32-EuNEmlkYMoCngvuOuNwRThh3rrOmLGjqOhRMSFdfnxbWbuxGchak8a3gifXoy-Wu9CTeaMsmkYEXw4UEQw4-5NE6PPlkYBjNBmJPGmPBWSIpEQd__h27DHEvDkyZcKl4qZG2hPi6ULZ-YIvT7YjDSdznRJSd6yUmB3_1b_h59DAb9C_B5umY</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>He, Liping</creator><creator>Skirkanich, Jennifer</creator><creator>Moronetti, Lorenza</creator><creator>Lewis, Rosemary</creator><creator>Lamitina, Todd</creator><general>The Company of Biologists Ltd</general><general>The Company of Biologists Limited</general><general>The Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121101</creationdate><title>The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3</title><author>He, Liping ; Skirkanich, Jennifer ; Moronetti, Lorenza ; Lewis, Rosemary ; Lamitina, Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ABC transporters</topic><topic>Amino acids</topic><topic>Animals</topic><topic>ATP Binding Cassette Transporter, Sub-Family B - genetics</topic><topic>ATP Binding Cassette Transporter, Sub-Family B - metabolism</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Polarity</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Endoplasmic Reticulum-Associated Degradation</topic><topic>Enzymes</topic><topic>Gene Knockdown Techniques</topic><topic>Genomes</topic><topic>Humans</topic><topic>Mammals</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Osmotic Pressure</topic><topic>Plasma</topic><topic>Protein folding</topic><topic>Protein Stability</topic><topic>Quality control</topic><topic>Research Report</topic><topic>Stress, Physiological - genetics</topic><topic>Transcription, Genetic</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Liping</creatorcontrib><creatorcontrib>Skirkanich, Jennifer</creatorcontrib><creatorcontrib>Moronetti, Lorenza</creatorcontrib><creatorcontrib>Lewis, Rosemary</creatorcontrib><creatorcontrib>Lamitina, Todd</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Disease models &amp; mechanisms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Liping</au><au>Skirkanich, Jennifer</au><au>Moronetti, Lorenza</au><au>Lewis, Rosemary</au><au>Lamitina, Todd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3</atitle><jtitle>Disease models &amp; mechanisms</jtitle><addtitle>Dis Model Mech</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>5</volume><issue>6</issue><spage>930</spage><epage>939</epage><pages>930-939</pages><issn>1754-8403</issn><eissn>1754-8411</eissn><abstract>Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508) results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3(wt) was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3(ΔF508) was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3(ΔF508). Efficient degradation of PGP-3(ΔF508) required the function of several C. elegans ER-associated degradation (ERAD) homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>22569626</pmid><doi>10.1242/dmm.008987</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-8403
ispartof Disease models & mechanisms, 2012-11, Vol.5 (6), p.930-939
issn 1754-8403
1754-8411
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3e1fb6dfa21341d4bcaf429eb617d780
source Publicly Available Content Database; PubMed Central
subjects ABC transporters
Amino acids
Animals
ATP Binding Cassette Transporter, Sub-Family B - genetics
ATP Binding Cassette Transporter, Sub-Family B - metabolism
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
Caenorhabditis elegans - cytology
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Cell Membrane - metabolism
Cell Polarity
Cystic fibrosis
Cystic Fibrosis - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Endoplasmic Reticulum-Associated Degradation
Enzymes
Gene Knockdown Techniques
Genomes
Humans
Mammals
Mutation
Mutation - genetics
Osmotic Pressure
Plasma
Protein folding
Protein Stability
Quality control
Research Report
Stress, Physiological - genetics
Transcription, Genetic
Worms
title The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cystic-fibrosis-associated%20%CE%94F508%20mutation%20confers%20post-transcriptional%20destabilization%20on%20the%20C.%20elegans%20ABC%20transporter%20PGP-3&rft.jtitle=Disease%20models%20&%20mechanisms&rft.au=He,%20Liping&rft.date=2012-11-01&rft.volume=5&rft.issue=6&rft.spage=930&rft.epage=939&rft.pages=930-939&rft.issn=1754-8403&rft.eissn=1754-8411&rft_id=info:doi/10.1242/dmm.008987&rft_dat=%3Cproquest_doaj_%3E2689634145%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-df1e3c1474e21c291c0c57a9388956fc2d510429dcb63189312a49d0ae62e7a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689634145&rft_id=info:pmid/22569626&rfr_iscdi=true