Loading…

Synchronous motion of the Easter mantle plume and the East Pacific Rise

The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use 40 Ar/ 39 Ar isotopic and geochemical data to investigate the less explored western side around the Easter Mic...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-11, Vol.15 (1), p.9953-16, Article 9953
Main Authors: O’Connor, John M., Regelous, Marcel, Haase, Karsten M., Hemond, Christophe, Koppers, Anthony A. P., Miggins, Daniel P., Heaton, Daniel E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c378t-dbe077bdc277a2140a480bc4519b172c6cb3a25621f26e193d7ebf16fad75cdb3
container_end_page 16
container_issue 1
container_start_page 9953
container_title Nature communications
container_volume 15
creator O’Connor, John M.
Regelous, Marcel
Haase, Karsten M.
Hemond, Christophe
Koppers, Anthony A. P.
Miggins, Daniel P.
Heaton, Daniel E.
description The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use 40 Ar/ 39 Ar isotopic and geochemical data to investigate the less explored western side around the Easter Microplate. We propose a dynamic model in which a deeper (600 km-depth), less buoyant mantle exerts a westward force on the East Pacific Rise (EPR), while a more buoyant plume region drives Easter hotspot volcanism and a localised acceleration in seafloor spreading. Our findings suggest that the Easter hotspot is the more focused surface expression of the most buoyant region of a vast, deep-seated mantle plume extending from the Pacific Large Low Shear Velocity Province (LLSVP). This challenges the traditional view of hotspots as isolated phenomena and suggests they are part of broader LLSVP-related mantle structures. Our results imply a more intricate, large-scale relationship between hotspots, mantle plumes, spreading ridges, and mantle dynamics. Examination of the Easter hotspot reveals it as part of a vast, deep-seated mantle system, influencing seafloor spreading and shaping the Pacific Ocean, which challenges the view of hotspots as isolated volcanic centres.
doi_str_mv 10.1038/s41467-024-54115-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3e24eb7caad04bb78558ee0b95b28201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e24eb7caad04bb78558ee0b95b28201</doaj_id><sourcerecordid>3129238383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-dbe077bdc277a2140a480bc4519b172c6cb3a25621f26e193d7ebf16fad75cdb3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEolXpH2CBLLFhE_AzdlYIVaVUqgTisbb8uJnxKLEHO0Hqv8edlKFlgb2w5XP8-fqepnlJ8FuCmXpXOOGdbDHlreCEiJY-aU4p5qQlkrKnD_YnzXkpO1wH64ni_HlzwnohiML4tLn6dhvdNqeYloKmNIcUURrQvAV0acoMGU0mziOg_bhMgEz0Rw19MS4MwaGvocCL5tlgxgLn9-tZ8-Pj5feLT-3N56vriw83rWNSza23gKW03lEpDSUcG66wdVyQ3tZaXecsM1R0lAy0A9IzL8EOpBuMl8J5y86a65Xrk9npfQ6Tybc6maAPBylvtMlzcCNoBpSDlc4Yj7m1UgmhALDthaWKYlJZ71fWfrETeAdxzmZ8BH2sxLDVm_RL13ZL3HFaCW_uCTn9XKDMegrFwTiaCLWhmhHad4pSLKv19T_WXVpyrL06uChTdVYXXV0up1IyDMdqCNZ3ues1d11z14fc9V0Vrx7-43jlT8rVwFZDqVLcQP779n-wvwEaqLeS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129238383</pqid></control><display><type>article</type><title>Synchronous motion of the Easter mantle plume and the East Pacific Rise</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>O’Connor, John M. ; Regelous, Marcel ; Haase, Karsten M. ; Hemond, Christophe ; Koppers, Anthony A. P. ; Miggins, Daniel P. ; Heaton, Daniel E.</creator><creatorcontrib>O’Connor, John M. ; Regelous, Marcel ; Haase, Karsten M. ; Hemond, Christophe ; Koppers, Anthony A. P. ; Miggins, Daniel P. ; Heaton, Daniel E.</creatorcontrib><description>The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use 40 Ar/ 39 Ar isotopic and geochemical data to investigate the less explored western side around the Easter Microplate. We propose a dynamic model in which a deeper (600 km-depth), less buoyant mantle exerts a westward force on the East Pacific Rise (EPR), while a more buoyant plume region drives Easter hotspot volcanism and a localised acceleration in seafloor spreading. Our findings suggest that the Easter hotspot is the more focused surface expression of the most buoyant region of a vast, deep-seated mantle plume extending from the Pacific Large Low Shear Velocity Province (LLSVP). This challenges the traditional view of hotspots as isolated phenomena and suggests they are part of broader LLSVP-related mantle structures. Our results imply a more intricate, large-scale relationship between hotspots, mantle plumes, spreading ridges, and mantle dynamics. Examination of the Easter hotspot reveals it as part of a vast, deep-seated mantle system, influencing seafloor spreading and shaping the Pacific Ocean, which challenges the view of hotspots as isolated volcanic centres.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-54115-2</identifier><identifier>PMID: 39551800</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/58 ; 704/2151/209 ; 704/2151/210 ; 704/2151/2809 ; 704/2151/562 ; 704/2151/598 ; Acceleration ; Buoyancy ; Dynamic models ; Hot spots (geology) ; Humanities and Social Sciences ; Islands ; Lithosphere ; multidisciplinary ; Ocean floor ; Plumes ; Science ; Science (multidisciplinary) ; Sea floor spreading ; Seafloor spreading ; Spreading ; Trends ; Volcanic activity</subject><ispartof>Nature communications, 2024-11, Vol.15 (1), p.9953-16, Article 9953</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-dbe077bdc277a2140a480bc4519b172c6cb3a25621f26e193d7ebf16fad75cdb3</cites><orcidid>0000-0002-0153-5504 ; 0000-0002-8136-5372 ; 0000-0003-1255-7642 ; 0000-0003-4768-5978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3129238383/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3129238383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39551800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Connor, John M.</creatorcontrib><creatorcontrib>Regelous, Marcel</creatorcontrib><creatorcontrib>Haase, Karsten M.</creatorcontrib><creatorcontrib>Hemond, Christophe</creatorcontrib><creatorcontrib>Koppers, Anthony A. P.</creatorcontrib><creatorcontrib>Miggins, Daniel P.</creatorcontrib><creatorcontrib>Heaton, Daniel E.</creatorcontrib><title>Synchronous motion of the Easter mantle plume and the East Pacific Rise</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use 40 Ar/ 39 Ar isotopic and geochemical data to investigate the less explored western side around the Easter Microplate. We propose a dynamic model in which a deeper (600 km-depth), less buoyant mantle exerts a westward force on the East Pacific Rise (EPR), while a more buoyant plume region drives Easter hotspot volcanism and a localised acceleration in seafloor spreading. Our findings suggest that the Easter hotspot is the more focused surface expression of the most buoyant region of a vast, deep-seated mantle plume extending from the Pacific Large Low Shear Velocity Province (LLSVP). This challenges the traditional view of hotspots as isolated phenomena and suggests they are part of broader LLSVP-related mantle structures. Our results imply a more intricate, large-scale relationship between hotspots, mantle plumes, spreading ridges, and mantle dynamics. Examination of the Easter hotspot reveals it as part of a vast, deep-seated mantle system, influencing seafloor spreading and shaping the Pacific Ocean, which challenges the view of hotspots as isolated volcanic centres.</description><subject>140/58</subject><subject>704/2151/209</subject><subject>704/2151/210</subject><subject>704/2151/2809</subject><subject>704/2151/562</subject><subject>704/2151/598</subject><subject>Acceleration</subject><subject>Buoyancy</subject><subject>Dynamic models</subject><subject>Hot spots (geology)</subject><subject>Humanities and Social Sciences</subject><subject>Islands</subject><subject>Lithosphere</subject><subject>multidisciplinary</subject><subject>Ocean floor</subject><subject>Plumes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sea floor spreading</subject><subject>Seafloor spreading</subject><subject>Spreading</subject><subject>Trends</subject><subject>Volcanic activity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAUhSMEolXpH2CBLLFhE_AzdlYIVaVUqgTisbb8uJnxKLEHO0Hqv8edlKFlgb2w5XP8-fqepnlJ8FuCmXpXOOGdbDHlreCEiJY-aU4p5qQlkrKnD_YnzXkpO1wH64ni_HlzwnohiML4tLn6dhvdNqeYloKmNIcUURrQvAV0acoMGU0mziOg_bhMgEz0Rw19MS4MwaGvocCL5tlgxgLn9-tZ8-Pj5feLT-3N56vriw83rWNSza23gKW03lEpDSUcG66wdVyQ3tZaXecsM1R0lAy0A9IzL8EOpBuMl8J5y86a65Xrk9npfQ6Tybc6maAPBylvtMlzcCNoBpSDlc4Yj7m1UgmhALDthaWKYlJZ71fWfrETeAdxzmZ8BH2sxLDVm_RL13ZL3HFaCW_uCTn9XKDMegrFwTiaCLWhmhHad4pSLKv19T_WXVpyrL06uChTdVYXXV0up1IyDMdqCNZ3ues1d11z14fc9V0Vrx7-43jlT8rVwFZDqVLcQP779n-wvwEaqLeS</recordid><startdate>20241117</startdate><enddate>20241117</enddate><creator>O’Connor, John M.</creator><creator>Regelous, Marcel</creator><creator>Haase, Karsten M.</creator><creator>Hemond, Christophe</creator><creator>Koppers, Anthony A. P.</creator><creator>Miggins, Daniel P.</creator><creator>Heaton, Daniel E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0153-5504</orcidid><orcidid>https://orcid.org/0000-0002-8136-5372</orcidid><orcidid>https://orcid.org/0000-0003-1255-7642</orcidid><orcidid>https://orcid.org/0000-0003-4768-5978</orcidid></search><sort><creationdate>20241117</creationdate><title>Synchronous motion of the Easter mantle plume and the East Pacific Rise</title><author>O’Connor, John M. ; Regelous, Marcel ; Haase, Karsten M. ; Hemond, Christophe ; Koppers, Anthony A. P. ; Miggins, Daniel P. ; Heaton, Daniel E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-dbe077bdc277a2140a480bc4519b172c6cb3a25621f26e193d7ebf16fad75cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/58</topic><topic>704/2151/209</topic><topic>704/2151/210</topic><topic>704/2151/2809</topic><topic>704/2151/562</topic><topic>704/2151/598</topic><topic>Acceleration</topic><topic>Buoyancy</topic><topic>Dynamic models</topic><topic>Hot spots (geology)</topic><topic>Humanities and Social Sciences</topic><topic>Islands</topic><topic>Lithosphere</topic><topic>multidisciplinary</topic><topic>Ocean floor</topic><topic>Plumes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sea floor spreading</topic><topic>Seafloor spreading</topic><topic>Spreading</topic><topic>Trends</topic><topic>Volcanic activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Connor, John M.</creatorcontrib><creatorcontrib>Regelous, Marcel</creatorcontrib><creatorcontrib>Haase, Karsten M.</creatorcontrib><creatorcontrib>Hemond, Christophe</creatorcontrib><creatorcontrib>Koppers, Anthony A. P.</creatorcontrib><creatorcontrib>Miggins, Daniel P.</creatorcontrib><creatorcontrib>Heaton, Daniel E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Connor, John M.</au><au>Regelous, Marcel</au><au>Haase, Karsten M.</au><au>Hemond, Christophe</au><au>Koppers, Anthony A. P.</au><au>Miggins, Daniel P.</au><au>Heaton, Daniel E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronous motion of the Easter mantle plume and the East Pacific Rise</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-11-17</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>9953</spage><epage>16</epage><pages>9953-16</pages><artnum>9953</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use 40 Ar/ 39 Ar isotopic and geochemical data to investigate the less explored western side around the Easter Microplate. We propose a dynamic model in which a deeper (600 km-depth), less buoyant mantle exerts a westward force on the East Pacific Rise (EPR), while a more buoyant plume region drives Easter hotspot volcanism and a localised acceleration in seafloor spreading. Our findings suggest that the Easter hotspot is the more focused surface expression of the most buoyant region of a vast, deep-seated mantle plume extending from the Pacific Large Low Shear Velocity Province (LLSVP). This challenges the traditional view of hotspots as isolated phenomena and suggests they are part of broader LLSVP-related mantle structures. Our results imply a more intricate, large-scale relationship between hotspots, mantle plumes, spreading ridges, and mantle dynamics. Examination of the Easter hotspot reveals it as part of a vast, deep-seated mantle system, influencing seafloor spreading and shaping the Pacific Ocean, which challenges the view of hotspots as isolated volcanic centres.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39551800</pmid><doi>10.1038/s41467-024-54115-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0153-5504</orcidid><orcidid>https://orcid.org/0000-0002-8136-5372</orcidid><orcidid>https://orcid.org/0000-0003-1255-7642</orcidid><orcidid>https://orcid.org/0000-0003-4768-5978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-11, Vol.15 (1), p.9953-16, Article 9953
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3e24eb7caad04bb78558ee0b95b28201
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/58
704/2151/209
704/2151/210
704/2151/2809
704/2151/562
704/2151/598
Acceleration
Buoyancy
Dynamic models
Hot spots (geology)
Humanities and Social Sciences
Islands
Lithosphere
multidisciplinary
Ocean floor
Plumes
Science
Science (multidisciplinary)
Sea floor spreading
Seafloor spreading
Spreading
Trends
Volcanic activity
title Synchronous motion of the Easter mantle plume and the East Pacific Rise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronous%20motion%20of%20the%20Easter%20mantle%20plume%20and%20the%20East%20Pacific%20Rise&rft.jtitle=Nature%20communications&rft.au=O%E2%80%99Connor,%20John%20M.&rft.date=2024-11-17&rft.volume=15&rft.issue=1&rft.spage=9953&rft.epage=16&rft.pages=9953-16&rft.artnum=9953&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-54115-2&rft_dat=%3Cproquest_doaj_%3E3129238383%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-dbe077bdc277a2140a480bc4519b172c6cb3a25621f26e193d7ebf16fad75cdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3129238383&rft_id=info:pmid/39551800&rfr_iscdi=true