Loading…
Synchronous motion of the Easter mantle plume and the East Pacific Rise
The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use 40 Ar/ 39 Ar isotopic and geochemical data to investigate the less explored western side around the Easter Mic...
Saved in:
Published in: | Nature communications 2024-11, Vol.15 (1), p.9953-16, Article 9953 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-8bb2496ad7bcf321492e2a651ada6f1d7d890a07eadec9f216d35273b80924c53 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 9953 |
container_title | Nature communications |
container_volume | 15 |
creator | O’Connor, John M. Regelous, Marcel Haase, Karsten M. Hemond, Christophe Koppers, Anthony A. P. Miggins, Daniel P. Heaton, Daniel E. |
description | The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use
40
Ar/
39
Ar isotopic and geochemical data to investigate the less explored western side around the Easter Microplate. We propose a dynamic model in which a deeper (600 km-depth), less buoyant mantle exerts a westward force on the East Pacific Rise (EPR), while a more buoyant plume region drives Easter hotspot volcanism and a localised acceleration in seafloor spreading. Our findings suggest that the Easter hotspot is the more focused surface expression of the most buoyant region of a vast, deep-seated mantle plume extending from the Pacific Large Low Shear Velocity Province (LLSVP). This challenges the traditional view of hotspots as isolated phenomena and suggests they are part of broader LLSVP-related mantle structures. Our results imply a more intricate, large-scale relationship between hotspots, mantle plumes, spreading ridges, and mantle dynamics.
Examination of the Easter hotspot reveals it as part of a vast, deep-seated mantle system, influencing seafloor spreading and shaping the Pacific Ocean, which challenges the view of hotspots as isolated volcanic centres. |
doi_str_mv | 10.1038/s41467-024-54115-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3e24eb7caad04bb78558ee0b95b28201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e24eb7caad04bb78558ee0b95b28201</doaj_id><sourcerecordid>3129238383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-8bb2496ad7bcf321492e2a651ada6f1d7d890a07eadec9f216d35273b80924c53</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEolXpH2CBIrFhE7Cv7dhZIVSVUqkSiMfa8uNmJqPEHuwEqf8ed1KGlgX2wpbP8efre6rqJSVvKWHqXeaUt7IhwBvBKRUNPKlOgXDaUAns6YP9SXWe846UwTqqOH9enbBOCKoIOa2uvt0Gt00xxCXXU5yHGOrY1_MW60uTZ0z1ZMI8Yr0flwlrE_xRq78YN_SDq78OGV9Uz3ozZjy_X8-qHx8vv198am4-X11ffLhpHAeYG2Ut8K41XlrXM6C8AwTTCmq8aXvqpVcdMUSi8ei6HmjrmQDJrCIdcCfYWXW9cn00O71Pw2TSrY5m0IeDmDbapHlwI2qGwNFKZ4wn3FqphFCIxHbCggJCC-v9ytovdkLvMMzJjI-gj5UwbPUm_tKl3ZK0HArhzT0hxZ8L5llPQ3Y4jiZgaahmFLpWARBZrK__se7ikkLp1cEFTJVZXLC6XIo5J-yP1VCi73LXa-665K4Pueu7Kl49_Mfxyp-Ui4GthlyksMH09-3_YH8DqeW3Ow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129238383</pqid></control><display><type>article</type><title>Synchronous motion of the Easter mantle plume and the East Pacific Rise</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>O’Connor, John M. ; Regelous, Marcel ; Haase, Karsten M. ; Hemond, Christophe ; Koppers, Anthony A. P. ; Miggins, Daniel P. ; Heaton, Daniel E.</creator><creatorcontrib>O’Connor, John M. ; Regelous, Marcel ; Haase, Karsten M. ; Hemond, Christophe ; Koppers, Anthony A. P. ; Miggins, Daniel P. ; Heaton, Daniel E.</creatorcontrib><description>The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use
40
Ar/
39
Ar isotopic and geochemical data to investigate the less explored western side around the Easter Microplate. We propose a dynamic model in which a deeper (600 km-depth), less buoyant mantle exerts a westward force on the East Pacific Rise (EPR), while a more buoyant plume region drives Easter hotspot volcanism and a localised acceleration in seafloor spreading. Our findings suggest that the Easter hotspot is the more focused surface expression of the most buoyant region of a vast, deep-seated mantle plume extending from the Pacific Large Low Shear Velocity Province (LLSVP). This challenges the traditional view of hotspots as isolated phenomena and suggests they are part of broader LLSVP-related mantle structures. Our results imply a more intricate, large-scale relationship between hotspots, mantle plumes, spreading ridges, and mantle dynamics.
Examination of the Easter hotspot reveals it as part of a vast, deep-seated mantle system, influencing seafloor spreading and shaping the Pacific Ocean, which challenges the view of hotspots as isolated volcanic centres.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-54115-2</identifier><identifier>PMID: 39551800</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/58 ; 704/2151/209 ; 704/2151/210 ; 704/2151/2809 ; 704/2151/562 ; 704/2151/598 ; Acceleration ; Buoyancy ; Dynamic models ; Hot spots (geology) ; Humanities and Social Sciences ; Islands ; Lithosphere ; multidisciplinary ; Ocean floor ; Plumes ; Science ; Science (multidisciplinary) ; Sea floor spreading ; Seafloor spreading ; Spreading ; Trends ; Volcanic activity</subject><ispartof>Nature communications, 2024-11, Vol.15 (1), p.9953-16, Article 9953</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-8bb2496ad7bcf321492e2a651ada6f1d7d890a07eadec9f216d35273b80924c53</cites><orcidid>0000-0002-0153-5504 ; 0000-0002-8136-5372 ; 0000-0003-1255-7642 ; 0000-0003-4768-5978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3129238383/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3129238383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39551800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Connor, John M.</creatorcontrib><creatorcontrib>Regelous, Marcel</creatorcontrib><creatorcontrib>Haase, Karsten M.</creatorcontrib><creatorcontrib>Hemond, Christophe</creatorcontrib><creatorcontrib>Koppers, Anthony A. P.</creatorcontrib><creatorcontrib>Miggins, Daniel P.</creatorcontrib><creatorcontrib>Heaton, Daniel E.</creatorcontrib><title>Synchronous motion of the Easter mantle plume and the East Pacific Rise</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use
40
Ar/
39
Ar isotopic and geochemical data to investigate the less explored western side around the Easter Microplate. We propose a dynamic model in which a deeper (600 km-depth), less buoyant mantle exerts a westward force on the East Pacific Rise (EPR), while a more buoyant plume region drives Easter hotspot volcanism and a localised acceleration in seafloor spreading. Our findings suggest that the Easter hotspot is the more focused surface expression of the most buoyant region of a vast, deep-seated mantle plume extending from the Pacific Large Low Shear Velocity Province (LLSVP). This challenges the traditional view of hotspots as isolated phenomena and suggests they are part of broader LLSVP-related mantle structures. Our results imply a more intricate, large-scale relationship between hotspots, mantle plumes, spreading ridges, and mantle dynamics.
Examination of the Easter hotspot reveals it as part of a vast, deep-seated mantle system, influencing seafloor spreading and shaping the Pacific Ocean, which challenges the view of hotspots as isolated volcanic centres.</description><subject>140/58</subject><subject>704/2151/209</subject><subject>704/2151/210</subject><subject>704/2151/2809</subject><subject>704/2151/562</subject><subject>704/2151/598</subject><subject>Acceleration</subject><subject>Buoyancy</subject><subject>Dynamic models</subject><subject>Hot spots (geology)</subject><subject>Humanities and Social Sciences</subject><subject>Islands</subject><subject>Lithosphere</subject><subject>multidisciplinary</subject><subject>Ocean floor</subject><subject>Plumes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sea floor spreading</subject><subject>Seafloor spreading</subject><subject>Spreading</subject><subject>Trends</subject><subject>Volcanic activity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAUhSMEolXpH2CBIrFhE7Cv7dhZIVSVUqkSiMfa8uNmJqPEHuwEqf8ed1KGlgX2wpbP8efre6rqJSVvKWHqXeaUt7IhwBvBKRUNPKlOgXDaUAns6YP9SXWe846UwTqqOH9enbBOCKoIOa2uvt0Gt00xxCXXU5yHGOrY1_MW60uTZ0z1ZMI8Yr0flwlrE_xRq78YN_SDq78OGV9Uz3ozZjy_X8-qHx8vv198am4-X11ffLhpHAeYG2Ut8K41XlrXM6C8AwTTCmq8aXvqpVcdMUSi8ei6HmjrmQDJrCIdcCfYWXW9cn00O71Pw2TSrY5m0IeDmDbapHlwI2qGwNFKZ4wn3FqphFCIxHbCggJCC-v9ytovdkLvMMzJjI-gj5UwbPUm_tKl3ZK0HArhzT0hxZ8L5llPQ3Y4jiZgaahmFLpWARBZrK__se7ikkLp1cEFTJVZXLC6XIo5J-yP1VCi73LXa-665K4Pueu7Kl49_Mfxyp-Ui4GthlyksMH09-3_YH8DqeW3Ow</recordid><startdate>20241117</startdate><enddate>20241117</enddate><creator>O’Connor, John M.</creator><creator>Regelous, Marcel</creator><creator>Haase, Karsten M.</creator><creator>Hemond, Christophe</creator><creator>Koppers, Anthony A. P.</creator><creator>Miggins, Daniel P.</creator><creator>Heaton, Daniel E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0153-5504</orcidid><orcidid>https://orcid.org/0000-0002-8136-5372</orcidid><orcidid>https://orcid.org/0000-0003-1255-7642</orcidid><orcidid>https://orcid.org/0000-0003-4768-5978</orcidid></search><sort><creationdate>20241117</creationdate><title>Synchronous motion of the Easter mantle plume and the East Pacific Rise</title><author>O’Connor, John M. ; Regelous, Marcel ; Haase, Karsten M. ; Hemond, Christophe ; Koppers, Anthony A. P. ; Miggins, Daniel P. ; Heaton, Daniel E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-8bb2496ad7bcf321492e2a651ada6f1d7d890a07eadec9f216d35273b80924c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/58</topic><topic>704/2151/209</topic><topic>704/2151/210</topic><topic>704/2151/2809</topic><topic>704/2151/562</topic><topic>704/2151/598</topic><topic>Acceleration</topic><topic>Buoyancy</topic><topic>Dynamic models</topic><topic>Hot spots (geology)</topic><topic>Humanities and Social Sciences</topic><topic>Islands</topic><topic>Lithosphere</topic><topic>multidisciplinary</topic><topic>Ocean floor</topic><topic>Plumes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sea floor spreading</topic><topic>Seafloor spreading</topic><topic>Spreading</topic><topic>Trends</topic><topic>Volcanic activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Connor, John M.</creatorcontrib><creatorcontrib>Regelous, Marcel</creatorcontrib><creatorcontrib>Haase, Karsten M.</creatorcontrib><creatorcontrib>Hemond, Christophe</creatorcontrib><creatorcontrib>Koppers, Anthony A. P.</creatorcontrib><creatorcontrib>Miggins, Daniel P.</creatorcontrib><creatorcontrib>Heaton, Daniel E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Hospital Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Connor, John M.</au><au>Regelous, Marcel</au><au>Haase, Karsten M.</au><au>Hemond, Christophe</au><au>Koppers, Anthony A. P.</au><au>Miggins, Daniel P.</au><au>Heaton, Daniel E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronous motion of the Easter mantle plume and the East Pacific Rise</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-11-17</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>9953</spage><epage>16</epage><pages>9953-16</pages><artnum>9953</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use
40
Ar/
39
Ar isotopic and geochemical data to investigate the less explored western side around the Easter Microplate. We propose a dynamic model in which a deeper (600 km-depth), less buoyant mantle exerts a westward force on the East Pacific Rise (EPR), while a more buoyant plume region drives Easter hotspot volcanism and a localised acceleration in seafloor spreading. Our findings suggest that the Easter hotspot is the more focused surface expression of the most buoyant region of a vast, deep-seated mantle plume extending from the Pacific Large Low Shear Velocity Province (LLSVP). This challenges the traditional view of hotspots as isolated phenomena and suggests they are part of broader LLSVP-related mantle structures. Our results imply a more intricate, large-scale relationship between hotspots, mantle plumes, spreading ridges, and mantle dynamics.
Examination of the Easter hotspot reveals it as part of a vast, deep-seated mantle system, influencing seafloor spreading and shaping the Pacific Ocean, which challenges the view of hotspots as isolated volcanic centres.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39551800</pmid><doi>10.1038/s41467-024-54115-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0153-5504</orcidid><orcidid>https://orcid.org/0000-0002-8136-5372</orcidid><orcidid>https://orcid.org/0000-0003-1255-7642</orcidid><orcidid>https://orcid.org/0000-0003-4768-5978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-11, Vol.15 (1), p.9953-16, Article 9953 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3e24eb7caad04bb78558ee0b95b28201 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/58 704/2151/209 704/2151/210 704/2151/2809 704/2151/562 704/2151/598 Acceleration Buoyancy Dynamic models Hot spots (geology) Humanities and Social Sciences Islands Lithosphere multidisciplinary Ocean floor Plumes Science Science (multidisciplinary) Sea floor spreading Seafloor spreading Spreading Trends Volcanic activity |
title | Synchronous motion of the Easter mantle plume and the East Pacific Rise |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T02%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronous%20motion%20of%20the%20Easter%20mantle%20plume%20and%20the%20East%20Pacific%20Rise&rft.jtitle=Nature%20communications&rft.au=O%E2%80%99Connor,%20John%20M.&rft.date=2024-11-17&rft.volume=15&rft.issue=1&rft.spage=9953&rft.epage=16&rft.pages=9953-16&rft.artnum=9953&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-54115-2&rft_dat=%3Cproquest_doaj_%3E3129238383%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-8bb2496ad7bcf321492e2a651ada6f1d7d890a07eadec9f216d35273b80924c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3129238383&rft_id=info:pmid/39551800&rfr_iscdi=true |