Loading…
Coloring Properties of Mixed Cycloids
In this paper, we investigate partitions of highly symmetrical discrete structures called cycloids. In general, a mixed hypergraph has two types of hyperedges. The vertices are colored in such a way that each C-edge has two vertices of the same color, and each D-edge has two vertices of distinct col...
Saved in:
Published in: | Symmetry (Basel) 2021-08, Vol.13 (8), p.1539 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-9de8a45e6c9e7687465eea97f26a2a18929240198ee4884de8bfd422a811eb883 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-9de8a45e6c9e7687465eea97f26a2a18929240198ee4884de8bfd422a811eb883 |
container_end_page | |
container_issue | 8 |
container_start_page | 1539 |
container_title | Symmetry (Basel) |
container_volume | 13 |
creator | Dósa, György Newman, Nicholas Tuza, Zsolt Voloshin, Vitaly |
description | In this paper, we investigate partitions of highly symmetrical discrete structures called cycloids. In general, a mixed hypergraph has two types of hyperedges. The vertices are colored in such a way that each C-edge has two vertices of the same color, and each D-edge has two vertices of distinct colors. In our case, a mixed cycloid is a mixed hypergraph whose vertices can be arranged in a cyclic order, and every consecutive p vertices form a C-edge, and every consecutive q vertices form a D-edge in the ordering. We completely determine the maximum number of colors that can be used for any p≥3 and any q≥2. We also develop an algorithm that generates a coloring with any number of colors between the minimum and maximum. Finally, we discuss the colorings of mixed cycloids when the maximum number of colors coincides with its upper bound, which is the largest cardinality of a set of vertices containing no C-edge. |
doi_str_mv | 10.3390/sym13081539 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3e3b6d2f80d44234b8d7d1f4db2a841f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e3b6d2f80d44234b8d7d1f4db2a841f</doaj_id><sourcerecordid>2565715215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-9de8a45e6c9e7687465eea97f26a2a18929240198ee4884de8bfd422a811eb883</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGpP_gML4klW8zHJJkdZ_ChU9KDnkN1MypZtU5MW7H_v6op0LjM8Hr95PEIuGb0VwtC7fFgzQTWTwpyQCaeVKLUxcHp0n5NZzis6jKQSFJ2Q6zr2MXWbZfGW4hbTrsNcxFC8dF_oi_rQ9rHz-YKcBddnnP3tKfl4fHivn8vF69O8vl-UrVCwK41H7UCiag1WSlegJKIzVeDKcce04YYDZUYjgtYwuJvggXOnGcNGazEl85Hro1vZberWLh1sdJ39FWJaWjdEbHu0AkWjPA-aegAuoNG-8iyAbwYcsDCwrkbWNsXPPeadXcV92gzxLZdKVkzyoaopuRldbYo5Jwz_Xxm1P7Xao1rFNxVeZ_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565715215</pqid></control><display><type>article</type><title>Coloring Properties of Mixed Cycloids</title><source>ProQuest - Publicly Available Content Database</source><creator>Dósa, György ; Newman, Nicholas ; Tuza, Zsolt ; Voloshin, Vitaly</creator><creatorcontrib>Dósa, György ; Newman, Nicholas ; Tuza, Zsolt ; Voloshin, Vitaly</creatorcontrib><description>In this paper, we investigate partitions of highly symmetrical discrete structures called cycloids. In general, a mixed hypergraph has two types of hyperedges. The vertices are colored in such a way that each C-edge has two vertices of the same color, and each D-edge has two vertices of distinct colors. In our case, a mixed cycloid is a mixed hypergraph whose vertices can be arranged in a cyclic order, and every consecutive p vertices form a C-edge, and every consecutive q vertices form a D-edge in the ordering. We completely determine the maximum number of colors that can be used for any p≥3 and any q≥2. We also develop an algorithm that generates a coloring with any number of colors between the minimum and maximum. Finally, we discuss the colorings of mixed cycloids when the maximum number of colors coincides with its upper bound, which is the largest cardinality of a set of vertices containing no C-edge.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym13081539</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Apexes ; circular hypergraph ; Color ; coloring ; Cycloids ; Graph coloring ; Graph theory ; Graphs ; mixed hypergraph ; Upper bounds</subject><ispartof>Symmetry (Basel), 2021-08, Vol.13 (8), p.1539</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-9de8a45e6c9e7687465eea97f26a2a18929240198ee4884de8bfd422a811eb883</citedby><cites>FETCH-LOGICAL-c364t-9de8a45e6c9e7687465eea97f26a2a18929240198ee4884de8bfd422a811eb883</cites><orcidid>0000-0001-7692-0039 ; 0000-0002-4909-6694 ; 0000-0003-3235-9221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565715215/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565715215?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Dósa, György</creatorcontrib><creatorcontrib>Newman, Nicholas</creatorcontrib><creatorcontrib>Tuza, Zsolt</creatorcontrib><creatorcontrib>Voloshin, Vitaly</creatorcontrib><title>Coloring Properties of Mixed Cycloids</title><title>Symmetry (Basel)</title><description>In this paper, we investigate partitions of highly symmetrical discrete structures called cycloids. In general, a mixed hypergraph has two types of hyperedges. The vertices are colored in such a way that each C-edge has two vertices of the same color, and each D-edge has two vertices of distinct colors. In our case, a mixed cycloid is a mixed hypergraph whose vertices can be arranged in a cyclic order, and every consecutive p vertices form a C-edge, and every consecutive q vertices form a D-edge in the ordering. We completely determine the maximum number of colors that can be used for any p≥3 and any q≥2. We also develop an algorithm that generates a coloring with any number of colors between the minimum and maximum. Finally, we discuss the colorings of mixed cycloids when the maximum number of colors coincides with its upper bound, which is the largest cardinality of a set of vertices containing no C-edge.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>circular hypergraph</subject><subject>Color</subject><subject>coloring</subject><subject>Cycloids</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>mixed hypergraph</subject><subject>Upper bounds</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1LAzEQxYMoWGpP_gML4klW8zHJJkdZ_ChU9KDnkN1MypZtU5MW7H_v6op0LjM8Hr95PEIuGb0VwtC7fFgzQTWTwpyQCaeVKLUxcHp0n5NZzis6jKQSFJ2Q6zr2MXWbZfGW4hbTrsNcxFC8dF_oi_rQ9rHz-YKcBddnnP3tKfl4fHivn8vF69O8vl-UrVCwK41H7UCiag1WSlegJKIzVeDKcce04YYDZUYjgtYwuJvggXOnGcNGazEl85Hro1vZberWLh1sdJ39FWJaWjdEbHu0AkWjPA-aegAuoNG-8iyAbwYcsDCwrkbWNsXPPeadXcV92gzxLZdKVkzyoaopuRldbYo5Jwz_Xxm1P7Xao1rFNxVeZ_w</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Dósa, György</creator><creator>Newman, Nicholas</creator><creator>Tuza, Zsolt</creator><creator>Voloshin, Vitaly</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7692-0039</orcidid><orcidid>https://orcid.org/0000-0002-4909-6694</orcidid><orcidid>https://orcid.org/0000-0003-3235-9221</orcidid></search><sort><creationdate>20210801</creationdate><title>Coloring Properties of Mixed Cycloids</title><author>Dósa, György ; Newman, Nicholas ; Tuza, Zsolt ; Voloshin, Vitaly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-9de8a45e6c9e7687465eea97f26a2a18929240198ee4884de8bfd422a811eb883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>circular hypergraph</topic><topic>Color</topic><topic>coloring</topic><topic>Cycloids</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>mixed hypergraph</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dósa, György</creatorcontrib><creatorcontrib>Newman, Nicholas</creatorcontrib><creatorcontrib>Tuza, Zsolt</creatorcontrib><creatorcontrib>Voloshin, Vitaly</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dósa, György</au><au>Newman, Nicholas</au><au>Tuza, Zsolt</au><au>Voloshin, Vitaly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coloring Properties of Mixed Cycloids</atitle><jtitle>Symmetry (Basel)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>13</volume><issue>8</issue><spage>1539</spage><pages>1539-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>In this paper, we investigate partitions of highly symmetrical discrete structures called cycloids. In general, a mixed hypergraph has two types of hyperedges. The vertices are colored in such a way that each C-edge has two vertices of the same color, and each D-edge has two vertices of distinct colors. In our case, a mixed cycloid is a mixed hypergraph whose vertices can be arranged in a cyclic order, and every consecutive p vertices form a C-edge, and every consecutive q vertices form a D-edge in the ordering. We completely determine the maximum number of colors that can be used for any p≥3 and any q≥2. We also develop an algorithm that generates a coloring with any number of colors between the minimum and maximum. Finally, we discuss the colorings of mixed cycloids when the maximum number of colors coincides with its upper bound, which is the largest cardinality of a set of vertices containing no C-edge.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym13081539</doi><orcidid>https://orcid.org/0000-0001-7692-0039</orcidid><orcidid>https://orcid.org/0000-0002-4909-6694</orcidid><orcidid>https://orcid.org/0000-0003-3235-9221</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2021-08, Vol.13 (8), p.1539 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3e3b6d2f80d44234b8d7d1f4db2a841f |
source | ProQuest - Publicly Available Content Database |
subjects | Algorithms Apexes circular hypergraph Color coloring Cycloids Graph coloring Graph theory Graphs mixed hypergraph Upper bounds |
title | Coloring Properties of Mixed Cycloids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coloring%20Properties%20of%20Mixed%20Cycloids&rft.jtitle=Symmetry%20(Basel)&rft.au=D%C3%B3sa,%20Gy%C3%B6rgy&rft.date=2021-08-01&rft.volume=13&rft.issue=8&rft.spage=1539&rft.pages=1539-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym13081539&rft_dat=%3Cproquest_doaj_%3E2565715215%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-9de8a45e6c9e7687465eea97f26a2a18929240198ee4884de8bfd422a811eb883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565715215&rft_id=info:pmid/&rfr_iscdi=true |