Loading…

An Improved Alternating Direction Method of Multipliers for Matrix Completion

Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving...

Full description

Saved in:
Bibliographic Details
Published in:Foundations of computing and decision sciences 2024-02, Vol.49 (1), p.49-62
Main Authors: Yan, Xihong, Zhang, Ning, Li, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c352t-51862317efe9ef828baa61a7b84a073f5bf165fb0e4af8493502db6f2d111fa03
container_end_page 62
container_issue 1
container_start_page 49
container_title Foundations of computing and decision sciences
container_volume 49
creator Yan, Xihong
Zhang, Ning
Li, Hao
description Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving this problem. But its subproblems can be computationally demanding. In order to improve computational e ciency, for large scale matrix completion problems, this paper proposes an improved ADMM by using convex combination technique. Under certain assumptions, the global convergence of the new algorithm is proved. Finally, we demonstrate the performance of the proposed algorithms via numerical experiments.
doi_str_mv 10.2478/fcds-2024-0004
format article
fullrecord <record><control><sourceid>walterdegruyter_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3e8072d196f0449d87fbf2bb5358b7cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e8072d196f0449d87fbf2bb5358b7cb</doaj_id><sourcerecordid>10_2478_fcds_2024_000449149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-51862317efe9ef828baa61a7b84a073f5bf165fb0e4af8493502db6f2d111fa03</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EElXplbP_QIqfiSNOVXlVasQFzpad2MVVGle2C_Tf41CEuHDa2dXMSPsBcI3RnLBK3Ni2iwVBhBUIIXYGJoQiVFCG-PkffQlmMW6zA9V5E3gCmsUAV7t98O-mg4s-mTCo5IYNvHPBtMn5ATYmvfkOegubQ5_cvncmRGh9gI1KwX3Cpd_tezN6r8CFVX00s585Ba8P9y_Lp2L9_LhaLtZFSzlJBceiJBRXxpraWEGEVqrEqtKCKVRRy7XFJbcaGaasYDXliHS6tKTDGFuF6BSsTr2dV1u5D26nwlF65eT3wYeNVCG5tjeSGoGqHKxLixirO1FZbYnWnHKhq1bnrvmpqw0-xmDsbx9GcmQrR7ZyZCtHtjlwewp8qJFXZzbhcMxCbv0h0-vjP0FW4_zKF-9ZgIc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Improved Alternating Direction Method of Multipliers for Matrix Completion</title><source>DOAJ Directory of Open Access Journals</source><creator>Yan, Xihong ; Zhang, Ning ; Li, Hao</creator><creatorcontrib>Yan, Xihong ; Zhang, Ning ; Li, Hao</creatorcontrib><description>Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving this problem. But its subproblems can be computationally demanding. In order to improve computational e ciency, for large scale matrix completion problems, this paper proposes an improved ADMM by using convex combination technique. Under certain assumptions, the global convergence of the new algorithm is proved. Finally, we demonstrate the performance of the proposed algorithms via numerical experiments.</description><identifier>ISSN: 2300-3405</identifier><identifier>EISSN: 2300-3405</identifier><identifier>DOI: 10.2478/fcds-2024-0004</identifier><language>eng</language><publisher>Sciendo</publisher><subject>alternating direction method of multipliers ; matrix completion</subject><ispartof>Foundations of computing and decision sciences, 2024-02, Vol.49 (1), p.49-62</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c352t-51862317efe9ef828baa61a7b84a073f5bf165fb0e4af8493502db6f2d111fa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Xihong</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><title>An Improved Alternating Direction Method of Multipliers for Matrix Completion</title><title>Foundations of computing and decision sciences</title><description>Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving this problem. But its subproblems can be computationally demanding. In order to improve computational e ciency, for large scale matrix completion problems, this paper proposes an improved ADMM by using convex combination technique. Under certain assumptions, the global convergence of the new algorithm is proved. Finally, we demonstrate the performance of the proposed algorithms via numerical experiments.</description><subject>alternating direction method of multipliers</subject><subject>matrix completion</subject><issn>2300-3405</issn><issn>2300-3405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kEtPwzAQhC0EElXplbP_QIqfiSNOVXlVasQFzpad2MVVGle2C_Tf41CEuHDa2dXMSPsBcI3RnLBK3Ni2iwVBhBUIIXYGJoQiVFCG-PkffQlmMW6zA9V5E3gCmsUAV7t98O-mg4s-mTCo5IYNvHPBtMn5ATYmvfkOegubQ5_cvncmRGh9gI1KwX3Cpd_tezN6r8CFVX00s585Ba8P9y_Lp2L9_LhaLtZFSzlJBceiJBRXxpraWEGEVqrEqtKCKVRRy7XFJbcaGaasYDXliHS6tKTDGFuF6BSsTr2dV1u5D26nwlF65eT3wYeNVCG5tjeSGoGqHKxLixirO1FZbYnWnHKhq1bnrvmpqw0-xmDsbx9GcmQrR7ZyZCtHtjlwewp8qJFXZzbhcMxCbv0h0-vjP0FW4_zKF-9ZgIc</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yan, Xihong</creator><creator>Zhang, Ning</creator><creator>Li, Hao</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20240201</creationdate><title>An Improved Alternating Direction Method of Multipliers for Matrix Completion</title><author>Yan, Xihong ; Zhang, Ning ; Li, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-51862317efe9ef828baa61a7b84a073f5bf165fb0e4af8493502db6f2d111fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alternating direction method of multipliers</topic><topic>matrix completion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xihong</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Foundations of computing and decision sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xihong</au><au>Zhang, Ning</au><au>Li, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Alternating Direction Method of Multipliers for Matrix Completion</atitle><jtitle>Foundations of computing and decision sciences</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>49</volume><issue>1</issue><spage>49</spage><epage>62</epage><pages>49-62</pages><issn>2300-3405</issn><eissn>2300-3405</eissn><abstract>Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving this problem. But its subproblems can be computationally demanding. In order to improve computational e ciency, for large scale matrix completion problems, this paper proposes an improved ADMM by using convex combination technique. Under certain assumptions, the global convergence of the new algorithm is proved. Finally, we demonstrate the performance of the proposed algorithms via numerical experiments.</abstract><pub>Sciendo</pub><doi>10.2478/fcds-2024-0004</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2300-3405
ispartof Foundations of computing and decision sciences, 2024-02, Vol.49 (1), p.49-62
issn 2300-3405
2300-3405
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3e8072d196f0449d87fbf2bb5358b7cb
source DOAJ Directory of Open Access Journals
subjects alternating direction method of multipliers
matrix completion
title An Improved Alternating Direction Method of Multipliers for Matrix Completion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Alternating%20Direction%20Method%20of%20Multipliers%20for%20Matrix%20Completion&rft.jtitle=Foundations%20of%20computing%20and%20decision%20sciences&rft.au=Yan,%20Xihong&rft.date=2024-02-01&rft.volume=49&rft.issue=1&rft.spage=49&rft.epage=62&rft.pages=49-62&rft.issn=2300-3405&rft.eissn=2300-3405&rft_id=info:doi/10.2478/fcds-2024-0004&rft_dat=%3Cwalterdegruyter_doaj_%3E10_2478_fcds_2024_000449149%3C/walterdegruyter_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-51862317efe9ef828baa61a7b84a073f5bf165fb0e4af8493502db6f2d111fa03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true