Loading…
An Improved Alternating Direction Method of Multipliers for Matrix Completion
Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving...
Saved in:
Published in: | Foundations of computing and decision sciences 2024-02, Vol.49 (1), p.49-62 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-51862317efe9ef828baa61a7b84a073f5bf165fb0e4af8493502db6f2d111fa03 |
container_end_page | 62 |
container_issue | 1 |
container_start_page | 49 |
container_title | Foundations of computing and decision sciences |
container_volume | 49 |
creator | Yan, Xihong Zhang, Ning Li, Hao |
description | Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving this problem. But its subproblems can be computationally demanding. In order to improve computational e ciency, for large scale matrix completion problems, this paper proposes an improved ADMM by using convex combination technique. Under certain assumptions, the global convergence of the new algorithm is proved. Finally, we demonstrate the performance of the proposed algorithms via numerical experiments. |
doi_str_mv | 10.2478/fcds-2024-0004 |
format | article |
fullrecord | <record><control><sourceid>walterdegruyter_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3e8072d196f0449d87fbf2bb5358b7cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e8072d196f0449d87fbf2bb5358b7cb</doaj_id><sourcerecordid>10_2478_fcds_2024_000449149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-51862317efe9ef828baa61a7b84a073f5bf165fb0e4af8493502db6f2d111fa03</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EElXplbP_QIqfiSNOVXlVasQFzpad2MVVGle2C_Tf41CEuHDa2dXMSPsBcI3RnLBK3Ni2iwVBhBUIIXYGJoQiVFCG-PkffQlmMW6zA9V5E3gCmsUAV7t98O-mg4s-mTCo5IYNvHPBtMn5ATYmvfkOegubQ5_cvncmRGh9gI1KwX3Cpd_tezN6r8CFVX00s585Ba8P9y_Lp2L9_LhaLtZFSzlJBceiJBRXxpraWEGEVqrEqtKCKVRRy7XFJbcaGaasYDXliHS6tKTDGFuF6BSsTr2dV1u5D26nwlF65eT3wYeNVCG5tjeSGoGqHKxLixirO1FZbYnWnHKhq1bnrvmpqw0-xmDsbx9GcmQrR7ZyZCtHtjlwewp8qJFXZzbhcMxCbv0h0-vjP0FW4_zKF-9ZgIc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Improved Alternating Direction Method of Multipliers for Matrix Completion</title><source>DOAJ Directory of Open Access Journals</source><creator>Yan, Xihong ; Zhang, Ning ; Li, Hao</creator><creatorcontrib>Yan, Xihong ; Zhang, Ning ; Li, Hao</creatorcontrib><description>Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving this problem. But its subproblems can be computationally demanding. In order to improve computational e ciency, for large scale matrix completion problems, this paper proposes an improved ADMM by using convex combination technique. Under certain assumptions, the global convergence of the new algorithm is proved. Finally, we demonstrate the performance of the proposed algorithms via numerical experiments.</description><identifier>ISSN: 2300-3405</identifier><identifier>EISSN: 2300-3405</identifier><identifier>DOI: 10.2478/fcds-2024-0004</identifier><language>eng</language><publisher>Sciendo</publisher><subject>alternating direction method of multipliers ; matrix completion</subject><ispartof>Foundations of computing and decision sciences, 2024-02, Vol.49 (1), p.49-62</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c352t-51862317efe9ef828baa61a7b84a073f5bf165fb0e4af8493502db6f2d111fa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Xihong</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><title>An Improved Alternating Direction Method of Multipliers for Matrix Completion</title><title>Foundations of computing and decision sciences</title><description>Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving this problem. But its subproblems can be computationally demanding. In order to improve computational e ciency, for large scale matrix completion problems, this paper proposes an improved ADMM by using convex combination technique. Under certain assumptions, the global convergence of the new algorithm is proved. Finally, we demonstrate the performance of the proposed algorithms via numerical experiments.</description><subject>alternating direction method of multipliers</subject><subject>matrix completion</subject><issn>2300-3405</issn><issn>2300-3405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kEtPwzAQhC0EElXplbP_QIqfiSNOVXlVasQFzpad2MVVGle2C_Tf41CEuHDa2dXMSPsBcI3RnLBK3Ni2iwVBhBUIIXYGJoQiVFCG-PkffQlmMW6zA9V5E3gCmsUAV7t98O-mg4s-mTCo5IYNvHPBtMn5ATYmvfkOegubQ5_cvncmRGh9gI1KwX3Cpd_tezN6r8CFVX00s585Ba8P9y_Lp2L9_LhaLtZFSzlJBceiJBRXxpraWEGEVqrEqtKCKVRRy7XFJbcaGaasYDXliHS6tKTDGFuF6BSsTr2dV1u5D26nwlF65eT3wYeNVCG5tjeSGoGqHKxLixirO1FZbYnWnHKhq1bnrvmpqw0-xmDsbx9GcmQrR7ZyZCtHtjlwewp8qJFXZzbhcMxCbv0h0-vjP0FW4_zKF-9ZgIc</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yan, Xihong</creator><creator>Zhang, Ning</creator><creator>Li, Hao</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20240201</creationdate><title>An Improved Alternating Direction Method of Multipliers for Matrix Completion</title><author>Yan, Xihong ; Zhang, Ning ; Li, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-51862317efe9ef828baa61a7b84a073f5bf165fb0e4af8493502db6f2d111fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alternating direction method of multipliers</topic><topic>matrix completion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xihong</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Foundations of computing and decision sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xihong</au><au>Zhang, Ning</au><au>Li, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Alternating Direction Method of Multipliers for Matrix Completion</atitle><jtitle>Foundations of computing and decision sciences</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>49</volume><issue>1</issue><spage>49</spage><epage>62</epage><pages>49-62</pages><issn>2300-3405</issn><eissn>2300-3405</eissn><abstract>Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving this problem. But its subproblems can be computationally demanding. In order to improve computational e ciency, for large scale matrix completion problems, this paper proposes an improved ADMM by using convex combination technique. Under certain assumptions, the global convergence of the new algorithm is proved. Finally, we demonstrate the performance of the proposed algorithms via numerical experiments.</abstract><pub>Sciendo</pub><doi>10.2478/fcds-2024-0004</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2300-3405 |
ispartof | Foundations of computing and decision sciences, 2024-02, Vol.49 (1), p.49-62 |
issn | 2300-3405 2300-3405 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3e8072d196f0449d87fbf2bb5358b7cb |
source | DOAJ Directory of Open Access Journals |
subjects | alternating direction method of multipliers matrix completion |
title | An Improved Alternating Direction Method of Multipliers for Matrix Completion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Alternating%20Direction%20Method%20of%20Multipliers%20for%20Matrix%20Completion&rft.jtitle=Foundations%20of%20computing%20and%20decision%20sciences&rft.au=Yan,%20Xihong&rft.date=2024-02-01&rft.volume=49&rft.issue=1&rft.spage=49&rft.epage=62&rft.pages=49-62&rft.issn=2300-3405&rft.eissn=2300-3405&rft_id=info:doi/10.2478/fcds-2024-0004&rft_dat=%3Cwalterdegruyter_doaj_%3E10_2478_fcds_2024_000449149%3C/walterdegruyter_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-51862317efe9ef828baa61a7b84a073f5bf165fb0e4af8493502db6f2d111fa03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |