Loading…

Low regularity conservation laws for Fokas-Lenells equation and Camassa-Holm equation

In this article, we mainly prove low regularity conservation laws for the Fokas-Lenells equation in Besov spaces with small initial data both on the line and on the circle. We develop a new technique in Fourier analysis and complex analysis to obtain the estimates. It is based on the perturbation de...

Full description

Saved in:
Bibliographic Details
Published in:Advances in nonlinear analysis 2024-06, Vol.13 (1), p.137-151
Main Authors: Shan, Minjie, Chen, Mingjuan, Lu, Yufeng, Wang, Jing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 151
container_issue 1
container_start_page 137
container_title Advances in nonlinear analysis
container_volume 13
creator Shan, Minjie
Chen, Mingjuan
Lu, Yufeng
Wang, Jing
description In this article, we mainly prove low regularity conservation laws for the Fokas-Lenells equation in Besov spaces with small initial data both on the line and on the circle. We develop a new technique in Fourier analysis and complex analysis to obtain the estimates. It is based on the perturbation determinant associated with the Lax pair introduced by Killip, Vişan, and Zhang for completely integrable dispersive partial differential equations. Additionally, we also utilize the perturbation determinant to derive the global estimates for the Schwartz solutions to the Camassa-Holm (CH) equation in . Even though the energy conservation law of the CH equation is a fact known to all, the perturbation determinant method indicates that we cannot get any conserved quantities for the CH equation in except
doi_str_mv 10.1515/anona-2024-0014
format article
fullrecord <record><control><sourceid>walterdegruyter_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ea388b3e0804e7e9f2d8e88e0bfab03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3ea388b3e0804e7e9f2d8e88e0bfab03</doaj_id><sourcerecordid>10_1515_anona_2024_0014131</sourcerecordid><originalsourceid>FETCH-LOGICAL-d243t-ea4e91039ee4b63b15d3de2f6a03855ed29d7e712970a46e298790ff6a4ad2e43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdBsNSeveYPrM5-pNn1JsVaIeDFgrdl0p2U1DSru4ml_960Fecyw_vAC_MwdifgXuQif8AudMglSM0BhL5iEyms4DaHjxs2S2kH45hcFAVM2LoMhyzSdmgxNv0x24QuUfzBvgld1uIhZXWI2TJ8YuIlddS2KaPv4cKx89kC95gS8lVo9__kll3X2Caa_e0pWy-f3xcrXr69vC6eSu6lVj0n1GQFKEukq7mqRO6VJ1nPEZTJc_LS-oIKIW0BqOckrSks1CPX6CVpNWWvl14fcOe-YrPHeHQBG3cOQtw6jH2zackpQmVMpQgMaCrI1tIbMoagqrECNXY9XroO2PYUPW3jcBwPtwtD7MYvnAB3EuzOgt1JsDsJFkqoXyHgc8U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low regularity conservation laws for Fokas-Lenells equation and Camassa-Holm equation</title><source>De Gruyter journals</source><creator>Shan, Minjie ; Chen, Mingjuan ; Lu, Yufeng ; Wang, Jing</creator><creatorcontrib>Shan, Minjie ; Chen, Mingjuan ; Lu, Yufeng ; Wang, Jing</creatorcontrib><description>In this article, we mainly prove low regularity conservation laws for the Fokas-Lenells equation in Besov spaces with small initial data both on the line and on the circle. We develop a new technique in Fourier analysis and complex analysis to obtain the estimates. It is based on the perturbation determinant associated with the Lax pair introduced by Killip, Vişan, and Zhang for completely integrable dispersive partial differential equations. Additionally, we also utilize the perturbation determinant to derive the global estimates for the Schwartz solutions to the Camassa-Holm (CH) equation in . Even though the energy conservation law of the CH equation is a fact known to all, the perturbation determinant method indicates that we cannot get any conserved quantities for the CH equation in except</description><identifier>EISSN: 2191-950X</identifier><identifier>DOI: 10.1515/anona-2024-0014</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>35Q55 ; 37K10 ; Camassa-Holm equation ; conservation law ; Fokas-Lenells equation ; perturbation determinant</subject><ispartof>Advances in nonlinear analysis, 2024-06, Vol.13 (1), p.137-151</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/anona-2024-0014/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/anona-2024-0014/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,66525,68309</link.rule.ids></links><search><creatorcontrib>Shan, Minjie</creatorcontrib><creatorcontrib>Chen, Mingjuan</creatorcontrib><creatorcontrib>Lu, Yufeng</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><title>Low regularity conservation laws for Fokas-Lenells equation and Camassa-Holm equation</title><title>Advances in nonlinear analysis</title><description>In this article, we mainly prove low regularity conservation laws for the Fokas-Lenells equation in Besov spaces with small initial data both on the line and on the circle. We develop a new technique in Fourier analysis and complex analysis to obtain the estimates. It is based on the perturbation determinant associated with the Lax pair introduced by Killip, Vişan, and Zhang for completely integrable dispersive partial differential equations. Additionally, we also utilize the perturbation determinant to derive the global estimates for the Schwartz solutions to the Camassa-Holm (CH) equation in . Even though the energy conservation law of the CH equation is a fact known to all, the perturbation determinant method indicates that we cannot get any conserved quantities for the CH equation in except</description><subject>35Q55</subject><subject>37K10</subject><subject>Camassa-Holm equation</subject><subject>conservation law</subject><subject>Fokas-Lenells equation</subject><subject>perturbation determinant</subject><issn>2191-950X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kE1Lw0AQhhdBsNSeveYPrM5-pNn1JsVaIeDFgrdl0p2U1DSru4ml_960Fecyw_vAC_MwdifgXuQif8AudMglSM0BhL5iEyms4DaHjxs2S2kH45hcFAVM2LoMhyzSdmgxNv0x24QuUfzBvgld1uIhZXWI2TJ8YuIlddS2KaPv4cKx89kC95gS8lVo9__kll3X2Caa_e0pWy-f3xcrXr69vC6eSu6lVj0n1GQFKEukq7mqRO6VJ1nPEZTJc_LS-oIKIW0BqOckrSks1CPX6CVpNWWvl14fcOe-YrPHeHQBG3cOQtw6jH2zackpQmVMpQgMaCrI1tIbMoagqrECNXY9XroO2PYUPW3jcBwPtwtD7MYvnAB3EuzOgt1JsDsJFkqoXyHgc8U</recordid><startdate>20240608</startdate><enddate>20240608</enddate><creator>Shan, Minjie</creator><creator>Chen, Mingjuan</creator><creator>Lu, Yufeng</creator><creator>Wang, Jing</creator><general>De Gruyter</general><scope>DOA</scope></search><sort><creationdate>20240608</creationdate><title>Low regularity conservation laws for Fokas-Lenells equation and Camassa-Holm equation</title><author>Shan, Minjie ; Chen, Mingjuan ; Lu, Yufeng ; Wang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d243t-ea4e91039ee4b63b15d3de2f6a03855ed29d7e712970a46e298790ff6a4ad2e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>35Q55</topic><topic>37K10</topic><topic>Camassa-Holm equation</topic><topic>conservation law</topic><topic>Fokas-Lenells equation</topic><topic>perturbation determinant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Minjie</creatorcontrib><creatorcontrib>Chen, Mingjuan</creatorcontrib><creatorcontrib>Lu, Yufeng</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><collection>Directory of Open Access Journals</collection><jtitle>Advances in nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Minjie</au><au>Chen, Mingjuan</au><au>Lu, Yufeng</au><au>Wang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low regularity conservation laws for Fokas-Lenells equation and Camassa-Holm equation</atitle><jtitle>Advances in nonlinear analysis</jtitle><date>2024-06-08</date><risdate>2024</risdate><volume>13</volume><issue>1</issue><spage>137</spage><epage>151</epage><pages>137-151</pages><eissn>2191-950X</eissn><abstract>In this article, we mainly prove low regularity conservation laws for the Fokas-Lenells equation in Besov spaces with small initial data both on the line and on the circle. We develop a new technique in Fourier analysis and complex analysis to obtain the estimates. It is based on the perturbation determinant associated with the Lax pair introduced by Killip, Vişan, and Zhang for completely integrable dispersive partial differential equations. Additionally, we also utilize the perturbation determinant to derive the global estimates for the Schwartz solutions to the Camassa-Holm (CH) equation in . Even though the energy conservation law of the CH equation is a fact known to all, the perturbation determinant method indicates that we cannot get any conserved quantities for the CH equation in except</abstract><pub>De Gruyter</pub><doi>10.1515/anona-2024-0014</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2191-950X
ispartof Advances in nonlinear analysis, 2024-06, Vol.13 (1), p.137-151
issn 2191-950X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3ea388b3e0804e7e9f2d8e88e0bfab03
source De Gruyter journals
subjects 35Q55
37K10
Camassa-Holm equation
conservation law
Fokas-Lenells equation
perturbation determinant
title Low regularity conservation laws for Fokas-Lenells equation and Camassa-Holm equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20regularity%20conservation%20laws%20for%20Fokas-Lenells%20equation%20and%20Camassa-Holm%20equation&rft.jtitle=Advances%20in%20nonlinear%20analysis&rft.au=Shan,%20Minjie&rft.date=2024-06-08&rft.volume=13&rft.issue=1&rft.spage=137&rft.epage=151&rft.pages=137-151&rft.eissn=2191-950X&rft_id=info:doi/10.1515/anona-2024-0014&rft_dat=%3Cwalterdegruyter_doaj_%3E10_1515_anona_2024_0014131%3C/walterdegruyter_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d243t-ea4e91039ee4b63b15d3de2f6a03855ed29d7e712970a46e298790ff6a4ad2e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true