Loading…

Combining graph neural networks and computer vision methods for cell nuclei classification in lung tissue

The detection of tumoural cells from whole slide images is an essential task in medical diagnosis and research. In this article, we propose and analyse a novel approach that combines computer vision-based models with graph neural networks to improve the accuracy of automated tumoural cell detection...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-04, Vol.10 (7), p.e28463-e28463, Article e28463
Main Authors: Pérez-Cano, Jose, Sansano Valero, Irene, Anglada-Rotger, David, Pina, Oscar, Salembier, Philippe, Marques, Ferran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c482t-7ca3f09b93ea6489d35b21683809bd6396c834bee51be44628e61cd07417de333
container_end_page e28463
container_issue 7
container_start_page e28463
container_title Heliyon
container_volume 10
creator Pérez-Cano, Jose
Sansano Valero, Irene
Anglada-Rotger, David
Pina, Oscar
Salembier, Philippe
Marques, Ferran
description The detection of tumoural cells from whole slide images is an essential task in medical diagnosis and research. In this article, we propose and analyse a novel approach that combines computer vision-based models with graph neural networks to improve the accuracy of automated tumoural cell detection in lung tissue. Our proposal leverages the inherent structure and relationships between cells in the tissue. Experimental results on our own curated dataset show that modelling the problem with graphs gives the model a clear advantage over just working at pixel level. This change in perspective provides extra information that makes it possible to improve the performance. The reduction of dimensionality that comes from working with the graph also allows us to increase the field of view with low computational requirements. Code is available at https://github.com/Jerry-Master/lung-tumour-study, models are uploaded to https://huggingface.co/Jerry-Master/Hovernet-plus-Graphs, and the dataset is published on Zenodo https://zenodo.org/doi/10.5281/zenodo.8368122. •Graph-based tumoural cell detection improves over previous state of the art.•Batch normalisation usefulness depends on graph architecture.•Preparing a dataset of 85 images from 9 patients with lung tumour disease.•Open-source code and pre-trained models available for reproducible research.
doi_str_mv 10.1016/j.heliyon.2024.e28463
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3eac85977f404a7caa72dfc48afb752c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844024044943</els_id><doaj_id>oai_doaj_org_article_3eac85977f404a7caa72dfc48afb752c</doaj_id><sourcerecordid>3035076660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-7ca3f09b93ea6489d35b21683809bd6396c834bee51be44628e61cd07417de333</originalsourceid><addsrcrecordid>eNqFUcFuGyEQXUWtkijNJ7Ti2IsdWFiWPVWV1SaRIvXSnhELs_a4u-AC6yp_X1w7aXIql0HDm_eG96rqPaNLRpm82S43MOJj8Mua1mIJtRKSn1WXtaDNQglB37y4X1TXKW0ppaxRsmv5eXXBVdNRJeVlhasw9ejRr8k6mt2GeJijGUvJv0P8mYjxjtgw7eYMkewxYfBkgrwJLpEhRGJhLOjZjoDEjiYlHNCafIChJ-NciDOmNMO76u1gxgTXp3pV_fj65fvqbvHw7fZ-9flhYYWq86K1hg-06zsORgrVOd70NZOKq9J0knfSKi56gIb1IISsFUhmHW0Fax1wzq-q-yOvC2ardxEnEx91MKj_NkJcaxMzloV1kbDFibYdBBWmKJu2dkPZwwx929S2cH06cu3mfgJnwedizivS1y8eN3od9prRrhzWFIaPJ4YYfs2Qsp4wHTwzHsKcNKe8oa2UkhZoc4TaGFKKMDzrMKoPseutPsWuD7HrY-xl7sPLJZ-nnkL-9wsotu8Rok4WwVtwGMHm4gv-R-IPntTELQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035076660</pqid></control><display><type>article</type><title>Combining graph neural networks and computer vision methods for cell nuclei classification in lung tissue</title><source>ScienceDirect</source><source>PubMed (Medline)</source><creator>Pérez-Cano, Jose ; Sansano Valero, Irene ; Anglada-Rotger, David ; Pina, Oscar ; Salembier, Philippe ; Marques, Ferran</creator><creatorcontrib>Pérez-Cano, Jose ; Sansano Valero, Irene ; Anglada-Rotger, David ; Pina, Oscar ; Salembier, Philippe ; Marques, Ferran</creatorcontrib><description>The detection of tumoural cells from whole slide images is an essential task in medical diagnosis and research. In this article, we propose and analyse a novel approach that combines computer vision-based models with graph neural networks to improve the accuracy of automated tumoural cell detection in lung tissue. Our proposal leverages the inherent structure and relationships between cells in the tissue. Experimental results on our own curated dataset show that modelling the problem with graphs gives the model a clear advantage over just working at pixel level. This change in perspective provides extra information that makes it possible to improve the performance. The reduction of dimensionality that comes from working with the graph also allows us to increase the field of view with low computational requirements. Code is available at https://github.com/Jerry-Master/lung-tumour-study, models are uploaded to https://huggingface.co/Jerry-Master/Hovernet-plus-Graphs, and the dataset is published on Zenodo https://zenodo.org/doi/10.5281/zenodo.8368122. •Graph-based tumoural cell detection improves over previous state of the art.•Batch normalisation usefulness depends on graph architecture.•Preparing a dataset of 85 images from 9 patients with lung tumour disease.•Open-source code and pre-trained models available for reproducible research.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2024.e28463</identifier><identifier>PMID: 38590866</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Convolutional neural networks ; Graph neural networks ; Histology ; Lung cancer</subject><ispartof>Heliyon, 2024-04, Vol.10 (7), p.e28463-e28463, Article e28463</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c482t-7ca3f09b93ea6489d35b21683809bd6396c834bee51be44628e61cd07417de333</cites><orcidid>0000-0001-8884-9604 ; 0000-0003-3325-507X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10999915/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844024044943$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27923,27924,45779,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38590866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-Cano, Jose</creatorcontrib><creatorcontrib>Sansano Valero, Irene</creatorcontrib><creatorcontrib>Anglada-Rotger, David</creatorcontrib><creatorcontrib>Pina, Oscar</creatorcontrib><creatorcontrib>Salembier, Philippe</creatorcontrib><creatorcontrib>Marques, Ferran</creatorcontrib><title>Combining graph neural networks and computer vision methods for cell nuclei classification in lung tissue</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>The detection of tumoural cells from whole slide images is an essential task in medical diagnosis and research. In this article, we propose and analyse a novel approach that combines computer vision-based models with graph neural networks to improve the accuracy of automated tumoural cell detection in lung tissue. Our proposal leverages the inherent structure and relationships between cells in the tissue. Experimental results on our own curated dataset show that modelling the problem with graphs gives the model a clear advantage over just working at pixel level. This change in perspective provides extra information that makes it possible to improve the performance. The reduction of dimensionality that comes from working with the graph also allows us to increase the field of view with low computational requirements. Code is available at https://github.com/Jerry-Master/lung-tumour-study, models are uploaded to https://huggingface.co/Jerry-Master/Hovernet-plus-Graphs, and the dataset is published on Zenodo https://zenodo.org/doi/10.5281/zenodo.8368122. •Graph-based tumoural cell detection improves over previous state of the art.•Batch normalisation usefulness depends on graph architecture.•Preparing a dataset of 85 images from 9 patients with lung tumour disease.•Open-source code and pre-trained models available for reproducible research.</description><subject>Convolutional neural networks</subject><subject>Graph neural networks</subject><subject>Histology</subject><subject>Lung cancer</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFUcFuGyEQXUWtkijNJ7Ti2IsdWFiWPVWV1SaRIvXSnhELs_a4u-AC6yp_X1w7aXIql0HDm_eG96rqPaNLRpm82S43MOJj8Mua1mIJtRKSn1WXtaDNQglB37y4X1TXKW0ppaxRsmv5eXXBVdNRJeVlhasw9ejRr8k6mt2GeJijGUvJv0P8mYjxjtgw7eYMkewxYfBkgrwJLpEhRGJhLOjZjoDEjiYlHNCafIChJ-NciDOmNMO76u1gxgTXp3pV_fj65fvqbvHw7fZ-9flhYYWq86K1hg-06zsORgrVOd70NZOKq9J0knfSKi56gIb1IISsFUhmHW0Fax1wzq-q-yOvC2ardxEnEx91MKj_NkJcaxMzloV1kbDFibYdBBWmKJu2dkPZwwx929S2cH06cu3mfgJnwedizivS1y8eN3od9prRrhzWFIaPJ4YYfs2Qsp4wHTwzHsKcNKe8oa2UkhZoc4TaGFKKMDzrMKoPseutPsWuD7HrY-xl7sPLJZ-nnkL-9wsotu8Rok4WwVtwGMHm4gv-R-IPntTELQ</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Pérez-Cano, Jose</creator><creator>Sansano Valero, Irene</creator><creator>Anglada-Rotger, David</creator><creator>Pina, Oscar</creator><creator>Salembier, Philippe</creator><creator>Marques, Ferran</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8884-9604</orcidid><orcidid>https://orcid.org/0000-0003-3325-507X</orcidid></search><sort><creationdate>20240415</creationdate><title>Combining graph neural networks and computer vision methods for cell nuclei classification in lung tissue</title><author>Pérez-Cano, Jose ; Sansano Valero, Irene ; Anglada-Rotger, David ; Pina, Oscar ; Salembier, Philippe ; Marques, Ferran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-7ca3f09b93ea6489d35b21683809bd6396c834bee51be44628e61cd07417de333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convolutional neural networks</topic><topic>Graph neural networks</topic><topic>Histology</topic><topic>Lung cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Cano, Jose</creatorcontrib><creatorcontrib>Sansano Valero, Irene</creatorcontrib><creatorcontrib>Anglada-Rotger, David</creatorcontrib><creatorcontrib>Pina, Oscar</creatorcontrib><creatorcontrib>Salembier, Philippe</creatorcontrib><creatorcontrib>Marques, Ferran</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Cano, Jose</au><au>Sansano Valero, Irene</au><au>Anglada-Rotger, David</au><au>Pina, Oscar</au><au>Salembier, Philippe</au><au>Marques, Ferran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining graph neural networks and computer vision methods for cell nuclei classification in lung tissue</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2024-04-15</date><risdate>2024</risdate><volume>10</volume><issue>7</issue><spage>e28463</spage><epage>e28463</epage><pages>e28463-e28463</pages><artnum>e28463</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>The detection of tumoural cells from whole slide images is an essential task in medical diagnosis and research. In this article, we propose and analyse a novel approach that combines computer vision-based models with graph neural networks to improve the accuracy of automated tumoural cell detection in lung tissue. Our proposal leverages the inherent structure and relationships between cells in the tissue. Experimental results on our own curated dataset show that modelling the problem with graphs gives the model a clear advantage over just working at pixel level. This change in perspective provides extra information that makes it possible to improve the performance. The reduction of dimensionality that comes from working with the graph also allows us to increase the field of view with low computational requirements. Code is available at https://github.com/Jerry-Master/lung-tumour-study, models are uploaded to https://huggingface.co/Jerry-Master/Hovernet-plus-Graphs, and the dataset is published on Zenodo https://zenodo.org/doi/10.5281/zenodo.8368122. •Graph-based tumoural cell detection improves over previous state of the art.•Batch normalisation usefulness depends on graph architecture.•Preparing a dataset of 85 images from 9 patients with lung tumour disease.•Open-source code and pre-trained models available for reproducible research.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38590866</pmid><doi>10.1016/j.heliyon.2024.e28463</doi><orcidid>https://orcid.org/0000-0001-8884-9604</orcidid><orcidid>https://orcid.org/0000-0003-3325-507X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-8440
ispartof Heliyon, 2024-04, Vol.10 (7), p.e28463-e28463, Article e28463
issn 2405-8440
2405-8440
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3eac85977f404a7caa72dfc48afb752c
source ScienceDirect; PubMed (Medline)
subjects Convolutional neural networks
Graph neural networks
Histology
Lung cancer
title Combining graph neural networks and computer vision methods for cell nuclei classification in lung tissue
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20graph%20neural%20networks%20and%20computer%20vision%20methods%20for%20cell%20nuclei%20classification%20in%20lung%20tissue&rft.jtitle=Heliyon&rft.au=P%C3%A9rez-Cano,%20Jose&rft.date=2024-04-15&rft.volume=10&rft.issue=7&rft.spage=e28463&rft.epage=e28463&rft.pages=e28463-e28463&rft.artnum=e28463&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2024.e28463&rft_dat=%3Cproquest_doaj_%3E3035076660%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-7ca3f09b93ea6489d35b21683809bd6396c834bee51be44628e61cd07417de333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035076660&rft_id=info:pmid/38590866&rfr_iscdi=true