Loading…
Dual Extended Kalman Filter for State of Charge Estimation of Lithium–Sulfur Batteries
Lithium-Sulfur is a promising technology for the next generation of batteries and research efforts for early-stage prototype implementation increased in recent years. For the development of a suitable Battery Management System, a state estimator is required; however, lithium-sulfur behavior presents...
Saved in:
Published in: | Energies (Basel) 2022-10, Vol.15 (19), p.6989 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lithium-Sulfur is a promising technology for the next generation of batteries and research efforts for early-stage prototype implementation increased in recent years. For the development of a suitable Battery Management System, a state estimator is required; however, lithium-sulfur behavior presents a large non-observable region that may difficult the convergence of the state estimation algorithm leading to large errors or even instability. A dual Extended Kalman Filter is proposed to circumvent the non-observability region. This objective is achieved by combining a parameter estimation algorithm with a cell model that includes non-linear behavior such as self-discharge and cell degradation. The resulting dual Kalman filter is applied to lithium–sulfur batteries to estimate their State-of-Charge incorporating the effects of degradation, temperature, and self-discharge deviations. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15196989 |