Loading…

Structure and function of archaeal histones

The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which o...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2018-09, Vol.14 (9), p.e1007582-e1007582
Main Authors: Henneman, Bram, van Emmerik, Clara, van Ingen, Hugo, Dame, Remus T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3
cites cdi_FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3
container_end_page e1007582
container_issue 9
container_start_page e1007582
container_title PLoS genetics
container_volume 14
creator Henneman, Bram
van Emmerik, Clara
van Ingen, Hugo
Dame, Remus T
description The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of "nucleosomes" of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into "endless" hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation.
doi_str_mv 10.1371/journal.pgen.1007582
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3eb68035816841478250e8f736b1533b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557636973</galeid><doaj_id>oai_doaj_org_article_3eb68035816841478250e8f736b1533b</doaj_id><sourcerecordid>A557636973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7of-A5EBQVZkxqRJ0_RGWBY_BhYXXPU2JOlJm6GTzCap6L83dcZlCl4ouUhInvc9yclbFM8wWmFS4zcbPwYnh9WuA7fCCNUVLx8Up7iqyLKmiD48Wp8UZzFuECIVb-rHxQlBJS4pbU6L17cpjDqNARbStQszOp2sdwtvFjLoXoIcFr2NyTuIT4pHRg4Rnh7m8-Lr-3dfrj4ur28-rK8ur5c610pL2pQtwoyXSCEDmkhCEWFcsZY3LFdWpVaG1AxjwpXhDFGsFZUtbXHbAAA5L9Z739bLjdgFu5Xhp_DSit8bPnRChmT1AIKAYnx6Vq5HMa15WSHgpiZM4YoQlb3e7r12o9pCq8GlIIeZ6fzE2V50_rtgmDDWoGxwcTAI_m6EmMTWRg3DIB34MYoSowrl1jOa0Rd7tJP5atYZnx31hIvLqqoZYU1NMrX6C5VHC1urc5-NzfszwauZIDMJfqROjjGK9e3n_2A__Tt7823Ovjxi-5yK1Ec_jFNW4hyke1AHH2MAc99qjMSUW3HIrZhyKw65zbLnx990L_oTVPILDvrmJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2105058264</pqid></control><display><type>article</type><title>Structure and function of archaeal histones</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Henneman, Bram ; van Emmerik, Clara ; van Ingen, Hugo ; Dame, Remus T</creator><contributor>Levin, Petra Anne</contributor><creatorcontrib>Henneman, Bram ; van Emmerik, Clara ; van Ingen, Hugo ; Dame, Remus T ; Levin, Petra Anne</creatorcontrib><description>The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of "nucleosomes" of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into "endless" hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007582</identifier><identifier>PMID: 30212449</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Archaea - physiology ; Biology and life sciences ; Chromatin ; Crystallography, X-Ray ; DNA ; DNA - metabolism ; Eukaryotes ; Gene Expression Regulation, Archaeal - physiology ; Genome, Archaeal - physiology ; Histones - chemistry ; Histones - physiology ; Nucleosomes - metabolism ; Physical Sciences ; Review ; RNA polymerases ; Transcription, Genetic - physiology</subject><ispartof>PLoS genetics, 2018-09, Vol.14 (9), p.e1007582-e1007582</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Henneman et al 2018 Henneman et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3</citedby><cites>FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3</cites><orcidid>0000-0003-2583-5891 ; 0000-0001-9863-1692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136690/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136690/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30212449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Levin, Petra Anne</contributor><creatorcontrib>Henneman, Bram</creatorcontrib><creatorcontrib>van Emmerik, Clara</creatorcontrib><creatorcontrib>van Ingen, Hugo</creatorcontrib><creatorcontrib>Dame, Remus T</creatorcontrib><title>Structure and function of archaeal histones</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of "nucleosomes" of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into "endless" hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation.</description><subject>Archaea - physiology</subject><subject>Biology and life sciences</subject><subject>Chromatin</subject><subject>Crystallography, X-Ray</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>Eukaryotes</subject><subject>Gene Expression Regulation, Archaeal - physiology</subject><subject>Genome, Archaeal - physiology</subject><subject>Histones - chemistry</subject><subject>Histones - physiology</subject><subject>Nucleosomes - metabolism</subject><subject>Physical Sciences</subject><subject>Review</subject><subject>RNA polymerases</subject><subject>Transcription, Genetic - physiology</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7of-A5EBQVZkxqRJ0_RGWBY_BhYXXPU2JOlJm6GTzCap6L83dcZlCl4ouUhInvc9yclbFM8wWmFS4zcbPwYnh9WuA7fCCNUVLx8Up7iqyLKmiD48Wp8UZzFuECIVb-rHxQlBJS4pbU6L17cpjDqNARbStQszOp2sdwtvFjLoXoIcFr2NyTuIT4pHRg4Rnh7m8-Lr-3dfrj4ur28-rK8ur5c610pL2pQtwoyXSCEDmkhCEWFcsZY3LFdWpVaG1AxjwpXhDFGsFZUtbXHbAAA5L9Z739bLjdgFu5Xhp_DSit8bPnRChmT1AIKAYnx6Vq5HMa15WSHgpiZM4YoQlb3e7r12o9pCq8GlIIeZ6fzE2V50_rtgmDDWoGxwcTAI_m6EmMTWRg3DIB34MYoSowrl1jOa0Rd7tJP5atYZnx31hIvLqqoZYU1NMrX6C5VHC1urc5-NzfszwauZIDMJfqROjjGK9e3n_2A__Tt7823Ovjxi-5yK1Ec_jFNW4hyke1AHH2MAc99qjMSUW3HIrZhyKw65zbLnx990L_oTVPILDvrmJg</recordid><startdate>20180913</startdate><enddate>20180913</enddate><creator>Henneman, Bram</creator><creator>van Emmerik, Clara</creator><creator>van Ingen, Hugo</creator><creator>Dame, Remus T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2583-5891</orcidid><orcidid>https://orcid.org/0000-0001-9863-1692</orcidid></search><sort><creationdate>20180913</creationdate><title>Structure and function of archaeal histones</title><author>Henneman, Bram ; van Emmerik, Clara ; van Ingen, Hugo ; Dame, Remus T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Archaea - physiology</topic><topic>Biology and life sciences</topic><topic>Chromatin</topic><topic>Crystallography, X-Ray</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>Eukaryotes</topic><topic>Gene Expression Regulation, Archaeal - physiology</topic><topic>Genome, Archaeal - physiology</topic><topic>Histones - chemistry</topic><topic>Histones - physiology</topic><topic>Nucleosomes - metabolism</topic><topic>Physical Sciences</topic><topic>Review</topic><topic>RNA polymerases</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henneman, Bram</creatorcontrib><creatorcontrib>van Emmerik, Clara</creatorcontrib><creatorcontrib>van Ingen, Hugo</creatorcontrib><creatorcontrib>Dame, Remus T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henneman, Bram</au><au>van Emmerik, Clara</au><au>van Ingen, Hugo</au><au>Dame, Remus T</au><au>Levin, Petra Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and function of archaeal histones</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-09-13</date><risdate>2018</risdate><volume>14</volume><issue>9</issue><spage>e1007582</spage><epage>e1007582</epage><pages>e1007582-e1007582</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of "nucleosomes" of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into "endless" hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30212449</pmid><doi>10.1371/journal.pgen.1007582</doi><orcidid>https://orcid.org/0000-0003-2583-5891</orcidid><orcidid>https://orcid.org/0000-0001-9863-1692</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2018-09, Vol.14 (9), p.e1007582-e1007582
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3eb68035816841478250e8f736b1533b
source Publicly Available Content Database; PubMed Central
subjects Archaea - physiology
Biology and life sciences
Chromatin
Crystallography, X-Ray
DNA
DNA - metabolism
Eukaryotes
Gene Expression Regulation, Archaeal - physiology
Genome, Archaeal - physiology
Histones - chemistry
Histones - physiology
Nucleosomes - metabolism
Physical Sciences
Review
RNA polymerases
Transcription, Genetic - physiology
title Structure and function of archaeal histones
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20function%20of%20archaeal%20histones&rft.jtitle=PLoS%20genetics&rft.au=Henneman,%20Bram&rft.date=2018-09-13&rft.volume=14&rft.issue=9&rft.spage=e1007582&rft.epage=e1007582&rft.pages=e1007582-e1007582&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007582&rft_dat=%3Cgale_doaj_%3EA557636973%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2105058264&rft_id=info:pmid/30212449&rft_galeid=A557636973&rfr_iscdi=true