Loading…
Structure and function of archaeal histones
The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which o...
Saved in:
Published in: | PLoS genetics 2018-09, Vol.14 (9), p.e1007582-e1007582 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3 |
container_end_page | e1007582 |
container_issue | 9 |
container_start_page | e1007582 |
container_title | PLoS genetics |
container_volume | 14 |
creator | Henneman, Bram van Emmerik, Clara van Ingen, Hugo Dame, Remus T |
description | The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of "nucleosomes" of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into "endless" hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation. |
doi_str_mv | 10.1371/journal.pgen.1007582 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3eb68035816841478250e8f736b1533b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557636973</galeid><doaj_id>oai_doaj_org_article_3eb68035816841478250e8f736b1533b</doaj_id><sourcerecordid>A557636973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7of-A5EBQVZkxqRJ0_RGWBY_BhYXXPU2JOlJm6GTzCap6L83dcZlCl4ouUhInvc9yclbFM8wWmFS4zcbPwYnh9WuA7fCCNUVLx8Up7iqyLKmiD48Wp8UZzFuECIVb-rHxQlBJS4pbU6L17cpjDqNARbStQszOp2sdwtvFjLoXoIcFr2NyTuIT4pHRg4Rnh7m8-Lr-3dfrj4ur28-rK8ur5c610pL2pQtwoyXSCEDmkhCEWFcsZY3LFdWpVaG1AxjwpXhDFGsFZUtbXHbAAA5L9Z739bLjdgFu5Xhp_DSit8bPnRChmT1AIKAYnx6Vq5HMa15WSHgpiZM4YoQlb3e7r12o9pCq8GlIIeZ6fzE2V50_rtgmDDWoGxwcTAI_m6EmMTWRg3DIB34MYoSowrl1jOa0Rd7tJP5atYZnx31hIvLqqoZYU1NMrX6C5VHC1urc5-NzfszwauZIDMJfqROjjGK9e3n_2A__Tt7823Ovjxi-5yK1Ec_jFNW4hyke1AHH2MAc99qjMSUW3HIrZhyKw65zbLnx990L_oTVPILDvrmJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2105058264</pqid></control><display><type>article</type><title>Structure and function of archaeal histones</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Henneman, Bram ; van Emmerik, Clara ; van Ingen, Hugo ; Dame, Remus T</creator><contributor>Levin, Petra Anne</contributor><creatorcontrib>Henneman, Bram ; van Emmerik, Clara ; van Ingen, Hugo ; Dame, Remus T ; Levin, Petra Anne</creatorcontrib><description>The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of "nucleosomes" of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into "endless" hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007582</identifier><identifier>PMID: 30212449</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Archaea - physiology ; Biology and life sciences ; Chromatin ; Crystallography, X-Ray ; DNA ; DNA - metabolism ; Eukaryotes ; Gene Expression Regulation, Archaeal - physiology ; Genome, Archaeal - physiology ; Histones - chemistry ; Histones - physiology ; Nucleosomes - metabolism ; Physical Sciences ; Review ; RNA polymerases ; Transcription, Genetic - physiology</subject><ispartof>PLoS genetics, 2018-09, Vol.14 (9), p.e1007582-e1007582</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Henneman et al 2018 Henneman et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3</citedby><cites>FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3</cites><orcidid>0000-0003-2583-5891 ; 0000-0001-9863-1692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136690/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136690/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30212449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Levin, Petra Anne</contributor><creatorcontrib>Henneman, Bram</creatorcontrib><creatorcontrib>van Emmerik, Clara</creatorcontrib><creatorcontrib>van Ingen, Hugo</creatorcontrib><creatorcontrib>Dame, Remus T</creatorcontrib><title>Structure and function of archaeal histones</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of "nucleosomes" of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into "endless" hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation.</description><subject>Archaea - physiology</subject><subject>Biology and life sciences</subject><subject>Chromatin</subject><subject>Crystallography, X-Ray</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>Eukaryotes</subject><subject>Gene Expression Regulation, Archaeal - physiology</subject><subject>Genome, Archaeal - physiology</subject><subject>Histones - chemistry</subject><subject>Histones - physiology</subject><subject>Nucleosomes - metabolism</subject><subject>Physical Sciences</subject><subject>Review</subject><subject>RNA polymerases</subject><subject>Transcription, Genetic - physiology</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7of-A5EBQVZkxqRJ0_RGWBY_BhYXXPU2JOlJm6GTzCap6L83dcZlCl4ouUhInvc9yclbFM8wWmFS4zcbPwYnh9WuA7fCCNUVLx8Up7iqyLKmiD48Wp8UZzFuECIVb-rHxQlBJS4pbU6L17cpjDqNARbStQszOp2sdwtvFjLoXoIcFr2NyTuIT4pHRg4Rnh7m8-Lr-3dfrj4ur28-rK8ur5c610pL2pQtwoyXSCEDmkhCEWFcsZY3LFdWpVaG1AxjwpXhDFGsFZUtbXHbAAA5L9Z739bLjdgFu5Xhp_DSit8bPnRChmT1AIKAYnx6Vq5HMa15WSHgpiZM4YoQlb3e7r12o9pCq8GlIIeZ6fzE2V50_rtgmDDWoGxwcTAI_m6EmMTWRg3DIB34MYoSowrl1jOa0Rd7tJP5atYZnx31hIvLqqoZYU1NMrX6C5VHC1urc5-NzfszwauZIDMJfqROjjGK9e3n_2A__Tt7823Ovjxi-5yK1Ec_jFNW4hyke1AHH2MAc99qjMSUW3HIrZhyKw65zbLnx990L_oTVPILDvrmJg</recordid><startdate>20180913</startdate><enddate>20180913</enddate><creator>Henneman, Bram</creator><creator>van Emmerik, Clara</creator><creator>van Ingen, Hugo</creator><creator>Dame, Remus T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2583-5891</orcidid><orcidid>https://orcid.org/0000-0001-9863-1692</orcidid></search><sort><creationdate>20180913</creationdate><title>Structure and function of archaeal histones</title><author>Henneman, Bram ; van Emmerik, Clara ; van Ingen, Hugo ; Dame, Remus T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Archaea - physiology</topic><topic>Biology and life sciences</topic><topic>Chromatin</topic><topic>Crystallography, X-Ray</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>Eukaryotes</topic><topic>Gene Expression Regulation, Archaeal - physiology</topic><topic>Genome, Archaeal - physiology</topic><topic>Histones - chemistry</topic><topic>Histones - physiology</topic><topic>Nucleosomes - metabolism</topic><topic>Physical Sciences</topic><topic>Review</topic><topic>RNA polymerases</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henneman, Bram</creatorcontrib><creatorcontrib>van Emmerik, Clara</creatorcontrib><creatorcontrib>van Ingen, Hugo</creatorcontrib><creatorcontrib>Dame, Remus T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henneman, Bram</au><au>van Emmerik, Clara</au><au>van Ingen, Hugo</au><au>Dame, Remus T</au><au>Levin, Petra Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and function of archaeal histones</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-09-13</date><risdate>2018</risdate><volume>14</volume><issue>9</issue><spage>e1007582</spage><epage>e1007582</epage><pages>e1007582-e1007582</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of "nucleosomes" of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into "endless" hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30212449</pmid><doi>10.1371/journal.pgen.1007582</doi><orcidid>https://orcid.org/0000-0003-2583-5891</orcidid><orcidid>https://orcid.org/0000-0001-9863-1692</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2018-09, Vol.14 (9), p.e1007582-e1007582 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3eb68035816841478250e8f736b1533b |
source | Publicly Available Content Database; PubMed Central |
subjects | Archaea - physiology Biology and life sciences Chromatin Crystallography, X-Ray DNA DNA - metabolism Eukaryotes Gene Expression Regulation, Archaeal - physiology Genome, Archaeal - physiology Histones - chemistry Histones - physiology Nucleosomes - metabolism Physical Sciences Review RNA polymerases Transcription, Genetic - physiology |
title | Structure and function of archaeal histones |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20function%20of%20archaeal%20histones&rft.jtitle=PLoS%20genetics&rft.au=Henneman,%20Bram&rft.date=2018-09-13&rft.volume=14&rft.issue=9&rft.spage=e1007582&rft.epage=e1007582&rft.pages=e1007582-e1007582&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007582&rft_dat=%3Cgale_doaj_%3EA557636973%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c740t-492d016820b0fec3a340368b6d896302b2cbf3761138bf86041cb4ad4d1d9eee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2105058264&rft_id=info:pmid/30212449&rft_galeid=A557636973&rfr_iscdi=true |