Loading…

High-Speed Serializer for a 64 GS s −1 Digital-to-Analog Converter in a 28 nm Fully-Depleted Silicon-on-Insulator CMOS Technology

An attractive solution to provide several channels with very high data rates of tens of Gbit s−1 for digital-to-analog converters (DACs) in arbitrary waveform generators (AWGs) is to use a high speed serializer in front of the DAC. As data sources, on-chip memories, digital signal processors or fiel...

Full description

Saved in:
Bibliographic Details
Published in:Advances in radio science 2018-01, Vol.16, p.99-108
Main Authors: Widmann, Daniel, Grözing, Markus, Berroth, Manfred
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An attractive solution to provide several channels with very high data rates of tens of Gbit s−1 for digital-to-analog converters (DACs) in arbitrary waveform generators (AWGs) is to use a high speed serializer in front of the DAC. As data sources, on-chip memories, digital signal processors or field-programmable gate arrays can be used. Here, we present a serializer consisting of a 19 channel 16:1 multiplexer (MUX) for output data rates up to 64 Gbit s−1 per channel and a low skew (∼ 8.8 ps) two-phase frequency divider and clock distribution network that is completely realized in static CMOS logic. The circuit is designed in a 28 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) technology and will be used in an 8 bit 64 GS s−1 DAC between the on-chip memory and the DAC output stage. Due to a four bits unary and four bits binary segmentation, a 19 channel MUX is required. Simulations on layout level reveal a data-dependent peak-to-peak jitter of less than 1.8 ps at the output of one MUX channel with a total average power consumption of approximately 1.15 W of the whole MUX and clock network.
ISSN:1684-9973
1684-9965
1684-9973
DOI:10.5194/ars-16-99-2018