Loading…

Proteomic analysis of salt and osmotic-drought stress in alfalfa seedlings

Alfalfa is widely grown and is one of the most important forage crops in the world, but its growth and biomass production are markedly reduced under salt and drought stress, particularly during the early seedling stage. To identify the mechanisms behind salt and drought responsiveness at the alfalfa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Integrative Agriculture 2016-10, Vol.15 (10), p.2266-2278
Main Authors: MA, Qiao-li, KANG, Jun-mei, LONG, Rui-cai, CUI, Yan-jun, ZHANG, Tie-jun, XIONG, Jun-bo, YANG, Qing-chuan, SUN, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alfalfa is widely grown and is one of the most important forage crops in the world, but its growth and biomass production are markedly reduced under salt and drought stress, particularly during the early seedling stage. To identify the mechanisms behind salt and drought responsiveness at the alfalfa seedling stage, the proteins expressed were analyzed under no-treatment, 200 mol L–1 Na Cl and 180 g L–1 PEG treatment conditions during the seedling stage. Out of more than 800 protein spots detected on two-dimensional electrophoresis(2-DE) g els, 35 proteins showed statistically significant responses(P〈0.05) to Na Cl and PEG stress, which were selected for tandem mass spectrometric identification, owing to their good resolution and abundance levels, and 32 proteins were positively identified. The identified proteins were divided into seven functional categories: photosynthetic metabolism, protein biosynthesis, folding and assembly, carbohydrate metabolism-associated proteins, stress defense related protein, metabolism of nucleic acid, other function categories and unknown proteins. Our results suggested that these proteins may play roles in alfalfa adaptation to salt and drought stress. Further study of these proteins will provide insights into the molecular mechanisms of abiotic stress and the discovery of new candidate markers in alfalfa.
ISSN:2095-3119
2352-3425
DOI:10.1016/S2095-3119(15)61280-1