Loading…

Sustainable Use of Gum Acacia as a Biopolymeric Additive in Ultra‐High Performance Concrete

The main objective of this research is to analyze whether biopolymer (gum acacia) can be used as an admixture for ultra‐high performance concrete (UHPC) and to elucidate the strength, durability, microstructure, and transport properties of biopolymer (gum acacia) incorporated UHPC mixes in combinati...

Full description

Saved in:
Bibliographic Details
Published in:Advances in civil engineering 2024-10, Vol.2024 (1)
Main Authors: Suthan, Kumar N, Sahaya, Ruben J, Ibsa, Neme M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c358t-fc885252e8dd11ebc8e201bfd1b23e647207a7a6f2a11fb106127cb2a8d61e4c3
container_end_page
container_issue 1
container_start_page
container_title Advances in civil engineering
container_volume 2024
creator Suthan, Kumar N
Sahaya, Ruben J
Ibsa, Neme M
description The main objective of this research is to analyze whether biopolymer (gum acacia) can be used as an admixture for ultra‐high performance concrete (UHPC) and to elucidate the strength, durability, microstructure, and transport properties of biopolymer (gum acacia) incorporated UHPC mixes in combination with the shrinkage reducing agent (SRA). The mechanical, thermal, and durability aspects of UHPC were studied at different ages and curing conditions by adding gum acacia in combination with the SRA. After 28 days under hybrid curing, the compressive strength increased by 22.19% and the flexural strength increased by 41.59% for 1% biopolymer addition. The highest strength and durability were obtained using the hybrid curing procedure using superplasticizer and gum acacia biopolymer at a water‐binder ratio of 0.35. With an improved microstructure, the results revealed improved hydration and durability as revealed through the scanning electron microscopic (SEM) images. The SEM photographs of the concrete showed more polymorphic patterns and crystals overall relative to the UHPC with SRA, while exhibiting little to no microfractures. Through adjustment of the biopolymer proportion and adoption of a suitable curing method, this research presents a new strategy for addressing the negative impact produced by the usage of SRA in UHPC.
doi_str_mv 10.1155/2024/6654556
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3ee6322585bb48799924f5b6dd6e3917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3ee6322585bb48799924f5b6dd6e3917</doaj_id><sourcerecordid>3118512753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-fc885252e8dd11ebc8e201bfd1b23e647207a7a6f2a11fb106127cb2a8d61e4c3</originalsourceid><addsrcrecordid>eNo9kcFqGzEURYfQQoKTXT9A0G1dz5NGGs3SNakTCCSQelnEk_SUKoxHjjQuZJdP6Df2SzKJTVbv8rice-FW1ReovwNIueA1bxZKyUZKdVKdgdLtXNdd8-lDa3VaXZQSbd00Ldecw1n1-35fRowD2p7YphBLga33W7Z06CIyLAzZj5h2qX_eUo6OLb2PY_xLLA5s048Z_7_8u4oPf9gd5ZDyFgdHbJUGl2mk8-pzwL7QxfHOqs3Py1-rq_nN7fp6tbyZOyH1OA9Oa8klJ-09AFmniddggwfLBampbN1iiypwBAgWagW8dZaj9gqocWJWXR-4PuGj2eW4xfxsEkbz_kj5wWAeo-vJCCIlOJdaWtvotus63gRplfeKRAftxPp6YO1yetpTGc1j2udhqm8EgJZTtBST69vB5XIqJVP4SIXavO1h3vYwxz3EK4C-fAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118512753</pqid></control><display><type>article</type><title>Sustainable Use of Gum Acacia as a Biopolymeric Additive in Ultra‐High Performance Concrete</title><source>Publicly Available Content Database</source><source>Wiley_OA刊</source><creator>Suthan, Kumar N ; Sahaya, Ruben J ; Ibsa, Neme M</creator><contributor>Camarini, Gladis ; Gladis Camarini</contributor><creatorcontrib>Suthan, Kumar N ; Sahaya, Ruben J ; Ibsa, Neme M ; Camarini, Gladis ; Gladis Camarini</creatorcontrib><description>The main objective of this research is to analyze whether biopolymer (gum acacia) can be used as an admixture for ultra‐high performance concrete (UHPC) and to elucidate the strength, durability, microstructure, and transport properties of biopolymer (gum acacia) incorporated UHPC mixes in combination with the shrinkage reducing agent (SRA). The mechanical, thermal, and durability aspects of UHPC were studied at different ages and curing conditions by adding gum acacia in combination with the SRA. After 28 days under hybrid curing, the compressive strength increased by 22.19% and the flexural strength increased by 41.59% for 1% biopolymer addition. The highest strength and durability were obtained using the hybrid curing procedure using superplasticizer and gum acacia biopolymer at a water‐binder ratio of 0.35. With an improved microstructure, the results revealed improved hydration and durability as revealed through the scanning electron microscopic (SEM) images. The SEM photographs of the concrete showed more polymorphic patterns and crystals overall relative to the UHPC with SRA, while exhibiting little to no microfractures. Through adjustment of the biopolymer proportion and adoption of a suitable curing method, this research presents a new strategy for addressing the negative impact produced by the usage of SRA in UHPC.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2024/6654556</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Additives ; Admixtures ; Aggregates ; Biopolymers ; Cement ; Compressive strength ; Corrosion ; Cracks ; Crystals ; Curing ; Curing agents ; Durability ; Flexural strength ; Heat conductivity ; Hydration ; Microfracture ; Microstructure ; Moisture content ; Reducing agents ; Scanning electron microscopy ; Superplasticizers ; Sustainability ; Sustainable materials ; Sustainable use ; Transport properties ; Ultra high performance concrete ; Water</subject><ispartof>Advances in civil engineering, 2024-10, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Suthan Kumar N. et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-fc885252e8dd11ebc8e201bfd1b23e647207a7a6f2a11fb106127cb2a8d61e4c3</cites><orcidid>0000-0002-5922-918X ; 0009-0007-6328-5794 ; 0009-0007-6090-4350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3118512753/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3118512753?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Camarini, Gladis</contributor><contributor>Gladis Camarini</contributor><creatorcontrib>Suthan, Kumar N</creatorcontrib><creatorcontrib>Sahaya, Ruben J</creatorcontrib><creatorcontrib>Ibsa, Neme M</creatorcontrib><title>Sustainable Use of Gum Acacia as a Biopolymeric Additive in Ultra‐High Performance Concrete</title><title>Advances in civil engineering</title><description>The main objective of this research is to analyze whether biopolymer (gum acacia) can be used as an admixture for ultra‐high performance concrete (UHPC) and to elucidate the strength, durability, microstructure, and transport properties of biopolymer (gum acacia) incorporated UHPC mixes in combination with the shrinkage reducing agent (SRA). The mechanical, thermal, and durability aspects of UHPC were studied at different ages and curing conditions by adding gum acacia in combination with the SRA. After 28 days under hybrid curing, the compressive strength increased by 22.19% and the flexural strength increased by 41.59% for 1% biopolymer addition. The highest strength and durability were obtained using the hybrid curing procedure using superplasticizer and gum acacia biopolymer at a water‐binder ratio of 0.35. With an improved microstructure, the results revealed improved hydration and durability as revealed through the scanning electron microscopic (SEM) images. The SEM photographs of the concrete showed more polymorphic patterns and crystals overall relative to the UHPC with SRA, while exhibiting little to no microfractures. Through adjustment of the biopolymer proportion and adoption of a suitable curing method, this research presents a new strategy for addressing the negative impact produced by the usage of SRA in UHPC.</description><subject>Additives</subject><subject>Admixtures</subject><subject>Aggregates</subject><subject>Biopolymers</subject><subject>Cement</subject><subject>Compressive strength</subject><subject>Corrosion</subject><subject>Cracks</subject><subject>Crystals</subject><subject>Curing</subject><subject>Curing agents</subject><subject>Durability</subject><subject>Flexural strength</subject><subject>Heat conductivity</subject><subject>Hydration</subject><subject>Microfracture</subject><subject>Microstructure</subject><subject>Moisture content</subject><subject>Reducing agents</subject><subject>Scanning electron microscopy</subject><subject>Superplasticizers</subject><subject>Sustainability</subject><subject>Sustainable materials</subject><subject>Sustainable use</subject><subject>Transport properties</subject><subject>Ultra high performance concrete</subject><subject>Water</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kcFqGzEURYfQQoKTXT9A0G1dz5NGGs3SNakTCCSQelnEk_SUKoxHjjQuZJdP6Df2SzKJTVbv8rice-FW1ReovwNIueA1bxZKyUZKdVKdgdLtXNdd8-lDa3VaXZQSbd00Ldecw1n1-35fRowD2p7YphBLga33W7Z06CIyLAzZj5h2qX_eUo6OLb2PY_xLLA5s048Z_7_8u4oPf9gd5ZDyFgdHbJUGl2mk8-pzwL7QxfHOqs3Py1-rq_nN7fp6tbyZOyH1OA9Oa8klJ-09AFmniddggwfLBampbN1iiypwBAgWagW8dZaj9gqocWJWXR-4PuGj2eW4xfxsEkbz_kj5wWAeo-vJCCIlOJdaWtvotus63gRplfeKRAftxPp6YO1yetpTGc1j2udhqm8EgJZTtBST69vB5XIqJVP4SIXavO1h3vYwxz3EK4C-fAQ</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Suthan, Kumar N</creator><creator>Sahaya, Ruben J</creator><creator>Ibsa, Neme M</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5922-918X</orcidid><orcidid>https://orcid.org/0009-0007-6328-5794</orcidid><orcidid>https://orcid.org/0009-0007-6090-4350</orcidid></search><sort><creationdate>20241008</creationdate><title>Sustainable Use of Gum Acacia as a Biopolymeric Additive in Ultra‐High Performance Concrete</title><author>Suthan, Kumar N ; Sahaya, Ruben J ; Ibsa, Neme M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-fc885252e8dd11ebc8e201bfd1b23e647207a7a6f2a11fb106127cb2a8d61e4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additives</topic><topic>Admixtures</topic><topic>Aggregates</topic><topic>Biopolymers</topic><topic>Cement</topic><topic>Compressive strength</topic><topic>Corrosion</topic><topic>Cracks</topic><topic>Crystals</topic><topic>Curing</topic><topic>Curing agents</topic><topic>Durability</topic><topic>Flexural strength</topic><topic>Heat conductivity</topic><topic>Hydration</topic><topic>Microfracture</topic><topic>Microstructure</topic><topic>Moisture content</topic><topic>Reducing agents</topic><topic>Scanning electron microscopy</topic><topic>Superplasticizers</topic><topic>Sustainability</topic><topic>Sustainable materials</topic><topic>Sustainable use</topic><topic>Transport properties</topic><topic>Ultra high performance concrete</topic><topic>Water</topic><toplevel>online_resources</toplevel><creatorcontrib>Suthan, Kumar N</creatorcontrib><creatorcontrib>Sahaya, Ruben J</creatorcontrib><creatorcontrib>Ibsa, Neme M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suthan, Kumar N</au><au>Sahaya, Ruben J</au><au>Ibsa, Neme M</au><au>Camarini, Gladis</au><au>Gladis Camarini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustainable Use of Gum Acacia as a Biopolymeric Additive in Ultra‐High Performance Concrete</atitle><jtitle>Advances in civil engineering</jtitle><date>2024-10-08</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>The main objective of this research is to analyze whether biopolymer (gum acacia) can be used as an admixture for ultra‐high performance concrete (UHPC) and to elucidate the strength, durability, microstructure, and transport properties of biopolymer (gum acacia) incorporated UHPC mixes in combination with the shrinkage reducing agent (SRA). The mechanical, thermal, and durability aspects of UHPC were studied at different ages and curing conditions by adding gum acacia in combination with the SRA. After 28 days under hybrid curing, the compressive strength increased by 22.19% and the flexural strength increased by 41.59% for 1% biopolymer addition. The highest strength and durability were obtained using the hybrid curing procedure using superplasticizer and gum acacia biopolymer at a water‐binder ratio of 0.35. With an improved microstructure, the results revealed improved hydration and durability as revealed through the scanning electron microscopic (SEM) images. The SEM photographs of the concrete showed more polymorphic patterns and crystals overall relative to the UHPC with SRA, while exhibiting little to no microfractures. Through adjustment of the biopolymer proportion and adoption of a suitable curing method, this research presents a new strategy for addressing the negative impact produced by the usage of SRA in UHPC.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/6654556</doi><orcidid>https://orcid.org/0000-0002-5922-918X</orcidid><orcidid>https://orcid.org/0009-0007-6328-5794</orcidid><orcidid>https://orcid.org/0009-0007-6090-4350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8086
ispartof Advances in civil engineering, 2024-10, Vol.2024 (1)
issn 1687-8086
1687-8094
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3ee6322585bb48799924f5b6dd6e3917
source Publicly Available Content Database; Wiley_OA刊
subjects Additives
Admixtures
Aggregates
Biopolymers
Cement
Compressive strength
Corrosion
Cracks
Crystals
Curing
Curing agents
Durability
Flexural strength
Heat conductivity
Hydration
Microfracture
Microstructure
Moisture content
Reducing agents
Scanning electron microscopy
Superplasticizers
Sustainability
Sustainable materials
Sustainable use
Transport properties
Ultra high performance concrete
Water
title Sustainable Use of Gum Acacia as a Biopolymeric Additive in Ultra‐High Performance Concrete
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustainable%20Use%20of%20Gum%20Acacia%20as%20a%20Biopolymeric%20Additive%20in%20Ultra%E2%80%90High%20Performance%20Concrete&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Suthan,%20Kumar%20N&rft.date=2024-10-08&rft.volume=2024&rft.issue=1&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2024/6654556&rft_dat=%3Cproquest_doaj_%3E3118512753%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-fc885252e8dd11ebc8e201bfd1b23e647207a7a6f2a11fb106127cb2a8d61e4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3118512753&rft_id=info:pmid/&rfr_iscdi=true