Loading…

CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons

The woody nature of grapevine ( L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2021-12, Vol.12, p.791030-791030
Main Authors: Olivares, Felipe, Loyola, Rodrigo, Olmedo, Blanca, Miccono, María de Los Ángeles, Aguirre, Carlos, Vergara, Ricardo, Riquelme, Danae, Madrid, Gabriela, Plantat, Philippe, Mora, Roxana, Espinoza, Daniel, Prieto, Humberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933
cites cdi_FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933
container_end_page 791030
container_issue
container_start_page 791030
container_title Frontiers in plant science
container_volume 12
creator Olivares, Felipe
Loyola, Rodrigo
Olmedo, Blanca
Miccono, María de Los Ángeles
Aguirre, Carlos
Vergara, Ricardo
Riquelme, Danae
Madrid, Gabriela
Plantat, Philippe
Mora, Roxana
Espinoza, Daniel
Prieto, Humberto
description The woody nature of grapevine ( L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used (BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system and evaluate their editing capability in individuals derived from -mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including ( ), ( ), ( ), and ( ). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to and . Assays have shown that a transgene-free double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.
doi_str_mv 10.3389/fpls.2021.791030
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3efefaa1c782493f8215e385527192f5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3efefaa1c782493f8215e385527192f5</doaj_id><sourcerecordid>2618514960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933</originalsourceid><addsrcrecordid>eNpVkktr3DAUhU1paUKafVdFy27s6OGXNoUwTaYDAy0zk7Y7IctXHgXbciXbkL-SX1u5k4ZEG110z_muJE4UfSQ4YazkV3pofUIxJUnBCWb4TXRO8jyN05z-fvuiPosuvb_HYWUYc168j85YqBgp8Xn0uNpt9j92VyvpOTpI18AINbqpzWj6BlmN1tCDR9feW2Xk0vtlxiO6nfpGtmg_eQXDaCrTmvEBmR79DEaPZtMbDU6ibYLUnKDD0XaDtz3aA9QteI_u_MJfQxeUs3GTj7-CM3Pg72BojbK9_xC907L1cPm0X0R3tzeH1bd4-329WV1vYxVeN8akUlVFC12nuqprDFRzTitINVSYYF2qigFwmqda4xyUBFXLlOWSaagLzhm7iDYnbm3lvRic6aR7EFYa8e_AukZINxrVgmCgQUtJVFHSlDNdUpIBK7OMFoRTnQXWlxNrmKoOagX96GT7Cvq605ujaOwsyoKxwAiAz08AZ_9M4EfRmfDHbSt7sJMXNCdlRlKe4yDFJ6ly1nsH-nkMwWJJiFgSIpaEiFNCguXTy-s9G_7ngf0FMbm7lw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618514960</pqid></control><display><type>article</type><title>CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons</title><source>PubMed Central</source><creator>Olivares, Felipe ; Loyola, Rodrigo ; Olmedo, Blanca ; Miccono, María de Los Ángeles ; Aguirre, Carlos ; Vergara, Ricardo ; Riquelme, Danae ; Madrid, Gabriela ; Plantat, Philippe ; Mora, Roxana ; Espinoza, Daniel ; Prieto, Humberto</creator><creatorcontrib>Olivares, Felipe ; Loyola, Rodrigo ; Olmedo, Blanca ; Miccono, María de Los Ángeles ; Aguirre, Carlos ; Vergara, Ricardo ; Riquelme, Danae ; Madrid, Gabriela ; Plantat, Philippe ; Mora, Roxana ; Espinoza, Daniel ; Prieto, Humberto</creatorcontrib><description>The woody nature of grapevine ( L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used (BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system and evaluate their editing capability in individuals derived from -mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including ( ), ( ), ( ), and ( ). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to and . Assays have shown that a transgene-free double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2021.791030</identifier><identifier>PMID: 35003180</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Agrobacterium-mediated transformation ; BeYDV-derived vector ; fungal susceptibility genes ; grapevine gene editing ; paired gRNA gene editing ; Plant Science</subject><ispartof>Frontiers in plant science, 2021-12, Vol.12, p.791030-791030</ispartof><rights>Copyright © 2021 Olivares, Loyola, Olmedo, Miccono, Aguirre, Vergara, Riquelme, Madrid, Plantat, Mora, Espinoza and Prieto.</rights><rights>Copyright © 2021 Olivares, Loyola, Olmedo, Miccono, Aguirre, Vergara, Riquelme, Madrid, Plantat, Mora, Espinoza and Prieto. 2021 Olivares, Loyola, Olmedo, Miccono, Aguirre, Vergara, Riquelme, Madrid, Plantat, Mora, Espinoza and Prieto</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933</citedby><cites>FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733719/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733719/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35003180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olivares, Felipe</creatorcontrib><creatorcontrib>Loyola, Rodrigo</creatorcontrib><creatorcontrib>Olmedo, Blanca</creatorcontrib><creatorcontrib>Miccono, María de Los Ángeles</creatorcontrib><creatorcontrib>Aguirre, Carlos</creatorcontrib><creatorcontrib>Vergara, Ricardo</creatorcontrib><creatorcontrib>Riquelme, Danae</creatorcontrib><creatorcontrib>Madrid, Gabriela</creatorcontrib><creatorcontrib>Plantat, Philippe</creatorcontrib><creatorcontrib>Mora, Roxana</creatorcontrib><creatorcontrib>Espinoza, Daniel</creatorcontrib><creatorcontrib>Prieto, Humberto</creatorcontrib><title>CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons</title><title>Frontiers in plant science</title><addtitle>Front Plant Sci</addtitle><description>The woody nature of grapevine ( L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used (BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system and evaluate their editing capability in individuals derived from -mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including ( ), ( ), ( ), and ( ). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to and . Assays have shown that a transgene-free double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.</description><subject>Agrobacterium-mediated transformation</subject><subject>BeYDV-derived vector</subject><subject>fungal susceptibility genes</subject><subject>grapevine gene editing</subject><subject>paired gRNA gene editing</subject><subject>Plant Science</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkktr3DAUhU1paUKafVdFy27s6OGXNoUwTaYDAy0zk7Y7IctXHgXbciXbkL-SX1u5k4ZEG110z_muJE4UfSQ4YazkV3pofUIxJUnBCWb4TXRO8jyN05z-fvuiPosuvb_HYWUYc168j85YqBgp8Xn0uNpt9j92VyvpOTpI18AINbqpzWj6BlmN1tCDR9feW2Xk0vtlxiO6nfpGtmg_eQXDaCrTmvEBmR79DEaPZtMbDU6ibYLUnKDD0XaDtz3aA9QteI_u_MJfQxeUs3GTj7-CM3Pg72BojbK9_xC907L1cPm0X0R3tzeH1bd4-329WV1vYxVeN8akUlVFC12nuqprDFRzTitINVSYYF2qigFwmqda4xyUBFXLlOWSaagLzhm7iDYnbm3lvRic6aR7EFYa8e_AukZINxrVgmCgQUtJVFHSlDNdUpIBK7OMFoRTnQXWlxNrmKoOagX96GT7Cvq605ujaOwsyoKxwAiAz08AZ_9M4EfRmfDHbSt7sJMXNCdlRlKe4yDFJ6ly1nsH-nkMwWJJiFgSIpaEiFNCguXTy-s9G_7ngf0FMbm7lw</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>Olivares, Felipe</creator><creator>Loyola, Rodrigo</creator><creator>Olmedo, Blanca</creator><creator>Miccono, María de Los Ángeles</creator><creator>Aguirre, Carlos</creator><creator>Vergara, Ricardo</creator><creator>Riquelme, Danae</creator><creator>Madrid, Gabriela</creator><creator>Plantat, Philippe</creator><creator>Mora, Roxana</creator><creator>Espinoza, Daniel</creator><creator>Prieto, Humberto</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211223</creationdate><title>CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons</title><author>Olivares, Felipe ; Loyola, Rodrigo ; Olmedo, Blanca ; Miccono, María de Los Ángeles ; Aguirre, Carlos ; Vergara, Ricardo ; Riquelme, Danae ; Madrid, Gabriela ; Plantat, Philippe ; Mora, Roxana ; Espinoza, Daniel ; Prieto, Humberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agrobacterium-mediated transformation</topic><topic>BeYDV-derived vector</topic><topic>fungal susceptibility genes</topic><topic>grapevine gene editing</topic><topic>paired gRNA gene editing</topic><topic>Plant Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olivares, Felipe</creatorcontrib><creatorcontrib>Loyola, Rodrigo</creatorcontrib><creatorcontrib>Olmedo, Blanca</creatorcontrib><creatorcontrib>Miccono, María de Los Ángeles</creatorcontrib><creatorcontrib>Aguirre, Carlos</creatorcontrib><creatorcontrib>Vergara, Ricardo</creatorcontrib><creatorcontrib>Riquelme, Danae</creatorcontrib><creatorcontrib>Madrid, Gabriela</creatorcontrib><creatorcontrib>Plantat, Philippe</creatorcontrib><creatorcontrib>Mora, Roxana</creatorcontrib><creatorcontrib>Espinoza, Daniel</creatorcontrib><creatorcontrib>Prieto, Humberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olivares, Felipe</au><au>Loyola, Rodrigo</au><au>Olmedo, Blanca</au><au>Miccono, María de Los Ángeles</au><au>Aguirre, Carlos</au><au>Vergara, Ricardo</au><au>Riquelme, Danae</au><au>Madrid, Gabriela</au><au>Plantat, Philippe</au><au>Mora, Roxana</au><au>Espinoza, Daniel</au><au>Prieto, Humberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons</atitle><jtitle>Frontiers in plant science</jtitle><addtitle>Front Plant Sci</addtitle><date>2021-12-23</date><risdate>2021</risdate><volume>12</volume><spage>791030</spage><epage>791030</epage><pages>791030-791030</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>The woody nature of grapevine ( L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used (BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system and evaluate their editing capability in individuals derived from -mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including ( ), ( ), ( ), and ( ). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to and . Assays have shown that a transgene-free double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>35003180</pmid><doi>10.3389/fpls.2021.791030</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-462X
ispartof Frontiers in plant science, 2021-12, Vol.12, p.791030-791030
issn 1664-462X
1664-462X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3efefaa1c782493f8215e385527192f5
source PubMed Central
subjects Agrobacterium-mediated transformation
BeYDV-derived vector
fungal susceptibility genes
grapevine gene editing
paired gRNA gene editing
Plant Science
title CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR/Cas9%20Targeted%20Editing%20of%20Genes%20Associated%20With%20Fungal%20Susceptibility%20in%20Vitis%20vinifera%20L.%20cv.%20Thompson%20Seedless%20Using%20Geminivirus-Derived%20Replicons&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Olivares,%20Felipe&rft.date=2021-12-23&rft.volume=12&rft.spage=791030&rft.epage=791030&rft.pages=791030-791030&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2021.791030&rft_dat=%3Cproquest_doaj_%3E2618514960%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618514960&rft_id=info:pmid/35003180&rfr_iscdi=true