Loading…
CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons
The woody nature of grapevine ( L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps...
Saved in:
Published in: | Frontiers in plant science 2021-12, Vol.12, p.791030-791030 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933 |
container_end_page | 791030 |
container_issue | |
container_start_page | 791030 |
container_title | Frontiers in plant science |
container_volume | 12 |
creator | Olivares, Felipe Loyola, Rodrigo Olmedo, Blanca Miccono, María de Los Ángeles Aguirre, Carlos Vergara, Ricardo Riquelme, Danae Madrid, Gabriela Plantat, Philippe Mora, Roxana Espinoza, Daniel Prieto, Humberto |
description | The woody nature of grapevine (
L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used
(BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system
and evaluate their editing capability in individuals derived from
-mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for
reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including
(
),
(
),
(
), and
(
). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to
and
. Assays have shown that a transgene-free
double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species. |
doi_str_mv | 10.3389/fpls.2021.791030 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3efefaa1c782493f8215e385527192f5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3efefaa1c782493f8215e385527192f5</doaj_id><sourcerecordid>2618514960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933</originalsourceid><addsrcrecordid>eNpVkktr3DAUhU1paUKafVdFy27s6OGXNoUwTaYDAy0zk7Y7IctXHgXbciXbkL-SX1u5k4ZEG110z_muJE4UfSQ4YazkV3pofUIxJUnBCWb4TXRO8jyN05z-fvuiPosuvb_HYWUYc168j85YqBgp8Xn0uNpt9j92VyvpOTpI18AINbqpzWj6BlmN1tCDR9feW2Xk0vtlxiO6nfpGtmg_eQXDaCrTmvEBmR79DEaPZtMbDU6ibYLUnKDD0XaDtz3aA9QteI_u_MJfQxeUs3GTj7-CM3Pg72BojbK9_xC907L1cPm0X0R3tzeH1bd4-329WV1vYxVeN8akUlVFC12nuqprDFRzTitINVSYYF2qigFwmqda4xyUBFXLlOWSaagLzhm7iDYnbm3lvRic6aR7EFYa8e_AukZINxrVgmCgQUtJVFHSlDNdUpIBK7OMFoRTnQXWlxNrmKoOagX96GT7Cvq605ujaOwsyoKxwAiAz08AZ_9M4EfRmfDHbSt7sJMXNCdlRlKe4yDFJ6ly1nsH-nkMwWJJiFgSIpaEiFNCguXTy-s9G_7ngf0FMbm7lw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618514960</pqid></control><display><type>article</type><title>CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons</title><source>PubMed Central</source><creator>Olivares, Felipe ; Loyola, Rodrigo ; Olmedo, Blanca ; Miccono, María de Los Ángeles ; Aguirre, Carlos ; Vergara, Ricardo ; Riquelme, Danae ; Madrid, Gabriela ; Plantat, Philippe ; Mora, Roxana ; Espinoza, Daniel ; Prieto, Humberto</creator><creatorcontrib>Olivares, Felipe ; Loyola, Rodrigo ; Olmedo, Blanca ; Miccono, María de Los Ángeles ; Aguirre, Carlos ; Vergara, Ricardo ; Riquelme, Danae ; Madrid, Gabriela ; Plantat, Philippe ; Mora, Roxana ; Espinoza, Daniel ; Prieto, Humberto</creatorcontrib><description>The woody nature of grapevine (
L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used
(BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system
and evaluate their editing capability in individuals derived from
-mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for
reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including
(
),
(
),
(
), and
(
). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to
and
. Assays have shown that a transgene-free
double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2021.791030</identifier><identifier>PMID: 35003180</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Agrobacterium-mediated transformation ; BeYDV-derived vector ; fungal susceptibility genes ; grapevine gene editing ; paired gRNA gene editing ; Plant Science</subject><ispartof>Frontiers in plant science, 2021-12, Vol.12, p.791030-791030</ispartof><rights>Copyright © 2021 Olivares, Loyola, Olmedo, Miccono, Aguirre, Vergara, Riquelme, Madrid, Plantat, Mora, Espinoza and Prieto.</rights><rights>Copyright © 2021 Olivares, Loyola, Olmedo, Miccono, Aguirre, Vergara, Riquelme, Madrid, Plantat, Mora, Espinoza and Prieto. 2021 Olivares, Loyola, Olmedo, Miccono, Aguirre, Vergara, Riquelme, Madrid, Plantat, Mora, Espinoza and Prieto</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933</citedby><cites>FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733719/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733719/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35003180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olivares, Felipe</creatorcontrib><creatorcontrib>Loyola, Rodrigo</creatorcontrib><creatorcontrib>Olmedo, Blanca</creatorcontrib><creatorcontrib>Miccono, María de Los Ángeles</creatorcontrib><creatorcontrib>Aguirre, Carlos</creatorcontrib><creatorcontrib>Vergara, Ricardo</creatorcontrib><creatorcontrib>Riquelme, Danae</creatorcontrib><creatorcontrib>Madrid, Gabriela</creatorcontrib><creatorcontrib>Plantat, Philippe</creatorcontrib><creatorcontrib>Mora, Roxana</creatorcontrib><creatorcontrib>Espinoza, Daniel</creatorcontrib><creatorcontrib>Prieto, Humberto</creatorcontrib><title>CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons</title><title>Frontiers in plant science</title><addtitle>Front Plant Sci</addtitle><description>The woody nature of grapevine (
L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used
(BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system
and evaluate their editing capability in individuals derived from
-mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for
reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including
(
),
(
),
(
), and
(
). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to
and
. Assays have shown that a transgene-free
double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.</description><subject>Agrobacterium-mediated transformation</subject><subject>BeYDV-derived vector</subject><subject>fungal susceptibility genes</subject><subject>grapevine gene editing</subject><subject>paired gRNA gene editing</subject><subject>Plant Science</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkktr3DAUhU1paUKafVdFy27s6OGXNoUwTaYDAy0zk7Y7IctXHgXbciXbkL-SX1u5k4ZEG110z_muJE4UfSQ4YazkV3pofUIxJUnBCWb4TXRO8jyN05z-fvuiPosuvb_HYWUYc168j85YqBgp8Xn0uNpt9j92VyvpOTpI18AINbqpzWj6BlmN1tCDR9feW2Xk0vtlxiO6nfpGtmg_eQXDaCrTmvEBmR79DEaPZtMbDU6ibYLUnKDD0XaDtz3aA9QteI_u_MJfQxeUs3GTj7-CM3Pg72BojbK9_xC907L1cPm0X0R3tzeH1bd4-329WV1vYxVeN8akUlVFC12nuqprDFRzTitINVSYYF2qigFwmqda4xyUBFXLlOWSaagLzhm7iDYnbm3lvRic6aR7EFYa8e_AukZINxrVgmCgQUtJVFHSlDNdUpIBK7OMFoRTnQXWlxNrmKoOagX96GT7Cvq605ujaOwsyoKxwAiAz08AZ_9M4EfRmfDHbSt7sJMXNCdlRlKe4yDFJ6ly1nsH-nkMwWJJiFgSIpaEiFNCguXTy-s9G_7ngf0FMbm7lw</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>Olivares, Felipe</creator><creator>Loyola, Rodrigo</creator><creator>Olmedo, Blanca</creator><creator>Miccono, María de Los Ángeles</creator><creator>Aguirre, Carlos</creator><creator>Vergara, Ricardo</creator><creator>Riquelme, Danae</creator><creator>Madrid, Gabriela</creator><creator>Plantat, Philippe</creator><creator>Mora, Roxana</creator><creator>Espinoza, Daniel</creator><creator>Prieto, Humberto</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211223</creationdate><title>CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons</title><author>Olivares, Felipe ; Loyola, Rodrigo ; Olmedo, Blanca ; Miccono, María de Los Ángeles ; Aguirre, Carlos ; Vergara, Ricardo ; Riquelme, Danae ; Madrid, Gabriela ; Plantat, Philippe ; Mora, Roxana ; Espinoza, Daniel ; Prieto, Humberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agrobacterium-mediated transformation</topic><topic>BeYDV-derived vector</topic><topic>fungal susceptibility genes</topic><topic>grapevine gene editing</topic><topic>paired gRNA gene editing</topic><topic>Plant Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olivares, Felipe</creatorcontrib><creatorcontrib>Loyola, Rodrigo</creatorcontrib><creatorcontrib>Olmedo, Blanca</creatorcontrib><creatorcontrib>Miccono, María de Los Ángeles</creatorcontrib><creatorcontrib>Aguirre, Carlos</creatorcontrib><creatorcontrib>Vergara, Ricardo</creatorcontrib><creatorcontrib>Riquelme, Danae</creatorcontrib><creatorcontrib>Madrid, Gabriela</creatorcontrib><creatorcontrib>Plantat, Philippe</creatorcontrib><creatorcontrib>Mora, Roxana</creatorcontrib><creatorcontrib>Espinoza, Daniel</creatorcontrib><creatorcontrib>Prieto, Humberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olivares, Felipe</au><au>Loyola, Rodrigo</au><au>Olmedo, Blanca</au><au>Miccono, María de Los Ángeles</au><au>Aguirre, Carlos</au><au>Vergara, Ricardo</au><au>Riquelme, Danae</au><au>Madrid, Gabriela</au><au>Plantat, Philippe</au><au>Mora, Roxana</au><au>Espinoza, Daniel</au><au>Prieto, Humberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons</atitle><jtitle>Frontiers in plant science</jtitle><addtitle>Front Plant Sci</addtitle><date>2021-12-23</date><risdate>2021</risdate><volume>12</volume><spage>791030</spage><epage>791030</epage><pages>791030-791030</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>The woody nature of grapevine (
L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used
(BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system
and evaluate their editing capability in individuals derived from
-mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for
reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including
(
),
(
),
(
), and
(
). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to
and
. Assays have shown that a transgene-free
double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>35003180</pmid><doi>10.3389/fpls.2021.791030</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-462X |
ispartof | Frontiers in plant science, 2021-12, Vol.12, p.791030-791030 |
issn | 1664-462X 1664-462X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3efefaa1c782493f8215e385527192f5 |
source | PubMed Central |
subjects | Agrobacterium-mediated transformation BeYDV-derived vector fungal susceptibility genes grapevine gene editing paired gRNA gene editing Plant Science |
title | CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR/Cas9%20Targeted%20Editing%20of%20Genes%20Associated%20With%20Fungal%20Susceptibility%20in%20Vitis%20vinifera%20L.%20cv.%20Thompson%20Seedless%20Using%20Geminivirus-Derived%20Replicons&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Olivares,%20Felipe&rft.date=2021-12-23&rft.volume=12&rft.spage=791030&rft.epage=791030&rft.pages=791030-791030&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2021.791030&rft_dat=%3Cproquest_doaj_%3E2618514960%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-1bcbb27fd4fbdd0e2f992be4feb010f8cb3ee9264ff06ecaecda436a3fed79933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618514960&rft_id=info:pmid/35003180&rfr_iscdi=true |