Loading…
Cloth manipulation based on category classification and landmark detection
Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were cr...
Saved in:
Published in: | International journal of advanced robotic systems 2022-07, Vol.19 (4) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | International journal of advanced robotic systems |
container_volume | 19 |
creator | Gustavsson, Oscar Ziegler, Thomas Welle, Michael C Bütepage, Judith Varava, Anastasiia Kragic, Danica |
description | Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were created. In this work, we leverage these advances in deep learning to perform cloth manipulation. We propose a full cloth manipulation framework that, performs category classification and landmark detection based on an image of a garment, followed by a manipulation strategy. The process is performed iteratively to achieve a stretching task where the goal is to bring a crumbled cloth into a stretched out position. We extensively evaluate our learning pipeline and show a detailed evaluation of our framework on different types of garments in a total of 140 recorded and available experiments. Finally, we demonstrate the benefits of training a network on augmented fashion data over using a small robotic-specific data set. |
doi_str_mv | 10.1177/17298806221110445 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f0877373643464d8872b59c4b5fb3ef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_17298806221110445</sage_id><doaj_id>oai_doaj_org_article_3f0877373643464d8872b59c4b5fb3ef</doaj_id><sourcerecordid>2708693237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoKNUf4G3B82q-kz1K_Ubwol7DbD7arWtTky3ivzd1iyJiDpPhzTvPTBiEjgk-JUSpM6JoozWWlBJCMOdiBx1stFprwne_cyz30VHOC7w5CotGHaC7aR-HefUKy2617mHo4rJqIXtXlcTC4GcxfVS2h5y70NnRAEtX9SW8QnqpnB-83ciHaC9An_3R9p6gp6vLx-lNff9wfTs9v68tF81QE-ExJZjiANgChEZ42TpFW8wocYJZ12KpgCrc8BA4b4njoDkL0nJSHtkE3Y5cF2FhVqkrY3yYCJ35EmKaGUhDZ3tvWMBaKaaY5IxL7rQufURjeStCy3worHpk5Xe_Wre_aBfd8_kX7WWYG0YkbUTxn4z-VYpva58Hs4jrtCzfNWVgLRtGS7cJIqPLpphz8uGbS7DZbMz82VipOd1OAjP_Q_2_4BNhb5SO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708693237</pqid></control><display><type>article</type><title>Cloth manipulation based on category classification and landmark detection</title><source>SAGE Journals Open Access</source><creator>Gustavsson, Oscar ; Ziegler, Thomas ; Welle, Michael C ; Bütepage, Judith ; Varava, Anastasiia ; Kragic, Danica</creator><creatorcontrib>Gustavsson, Oscar ; Ziegler, Thomas ; Welle, Michael C ; Bütepage, Judith ; Varava, Anastasiia ; Kragic, Danica</creatorcontrib><description>Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were created. In this work, we leverage these advances in deep learning to perform cloth manipulation. We propose a full cloth manipulation framework that, performs category classification and landmark detection based on an image of a garment, followed by a manipulation strategy. The process is performed iteratively to achieve a stretching task where the goal is to bring a crumbled cloth into a stretched out position. We extensively evaluate our learning pipeline and show a detailed evaluation of our framework on different types of garments in a total of 140 recorded and available experiments. Finally, we demonstrate the benefits of training a network on augmented fashion data over using a small robotic-specific data set.</description><identifier>ISSN: 1729-8806</identifier><identifier>ISSN: 1729-8814</identifier><identifier>EISSN: 1729-8814</identifier><identifier>DOI: 10.1177/17298806221110445</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>classification ; Cloth ; data augmentation ; Datasets ; Deep learning ; Evaluation ; garment manipulation ; Garments ; Image classification ; Image manipulation ; Machine learning ; vision for robotics</subject><ispartof>International journal of advanced robotic systems, 2022-07, Vol.19 (4)</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3</citedby><cites>FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3</cites><orcidid>0000-0003-3827-3824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/17298806221110445$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/17298806221110445$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,21945,27830,27901,27902,44921,45309</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-316295$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gustavsson, Oscar</creatorcontrib><creatorcontrib>Ziegler, Thomas</creatorcontrib><creatorcontrib>Welle, Michael C</creatorcontrib><creatorcontrib>Bütepage, Judith</creatorcontrib><creatorcontrib>Varava, Anastasiia</creatorcontrib><creatorcontrib>Kragic, Danica</creatorcontrib><title>Cloth manipulation based on category classification and landmark detection</title><title>International journal of advanced robotic systems</title><description>Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were created. In this work, we leverage these advances in deep learning to perform cloth manipulation. We propose a full cloth manipulation framework that, performs category classification and landmark detection based on an image of a garment, followed by a manipulation strategy. The process is performed iteratively to achieve a stretching task where the goal is to bring a crumbled cloth into a stretched out position. We extensively evaluate our learning pipeline and show a detailed evaluation of our framework on different types of garments in a total of 140 recorded and available experiments. Finally, we demonstrate the benefits of training a network on augmented fashion data over using a small robotic-specific data set.</description><subject>classification</subject><subject>Cloth</subject><subject>data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Evaluation</subject><subject>garment manipulation</subject><subject>Garments</subject><subject>Image classification</subject><subject>Image manipulation</subject><subject>Machine learning</subject><subject>vision for robotics</subject><issn>1729-8806</issn><issn>1729-8814</issn><issn>1729-8814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1LAzEQhoMoKNUf4G3B82q-kz1K_Ubwol7DbD7arWtTky3ivzd1iyJiDpPhzTvPTBiEjgk-JUSpM6JoozWWlBJCMOdiBx1stFprwne_cyz30VHOC7w5CotGHaC7aR-HefUKy2617mHo4rJqIXtXlcTC4GcxfVS2h5y70NnRAEtX9SW8QnqpnB-83ciHaC9An_3R9p6gp6vLx-lNff9wfTs9v68tF81QE-ExJZjiANgChEZ42TpFW8wocYJZ12KpgCrc8BA4b4njoDkL0nJSHtkE3Y5cF2FhVqkrY3yYCJ35EmKaGUhDZ3tvWMBaKaaY5IxL7rQufURjeStCy3worHpk5Xe_Wre_aBfd8_kX7WWYG0YkbUTxn4z-VYpva58Hs4jrtCzfNWVgLRtGS7cJIqPLpphz8uGbS7DZbMz82VipOd1OAjP_Q_2_4BNhb5SO</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Gustavsson, Oscar</creator><creator>Ziegler, Thomas</creator><creator>Welle, Michael C</creator><creator>Bütepage, Judith</creator><creator>Varava, Anastasiia</creator><creator>Kragic, Danica</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3827-3824</orcidid></search><sort><creationdate>20220701</creationdate><title>Cloth manipulation based on category classification and landmark detection</title><author>Gustavsson, Oscar ; Ziegler, Thomas ; Welle, Michael C ; Bütepage, Judith ; Varava, Anastasiia ; Kragic, Danica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>classification</topic><topic>Cloth</topic><topic>data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Evaluation</topic><topic>garment manipulation</topic><topic>Garments</topic><topic>Image classification</topic><topic>Image manipulation</topic><topic>Machine learning</topic><topic>vision for robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gustavsson, Oscar</creatorcontrib><creatorcontrib>Ziegler, Thomas</creatorcontrib><creatorcontrib>Welle, Michael C</creatorcontrib><creatorcontrib>Bütepage, Judith</creatorcontrib><creatorcontrib>Varava, Anastasiia</creatorcontrib><creatorcontrib>Kragic, Danica</creatorcontrib><collection>SAGE Journals Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of advanced robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gustavsson, Oscar</au><au>Ziegler, Thomas</au><au>Welle, Michael C</au><au>Bütepage, Judith</au><au>Varava, Anastasiia</au><au>Kragic, Danica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloth manipulation based on category classification and landmark detection</atitle><jtitle>International journal of advanced robotic systems</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><issn>1729-8806</issn><issn>1729-8814</issn><eissn>1729-8814</eissn><abstract>Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were created. In this work, we leverage these advances in deep learning to perform cloth manipulation. We propose a full cloth manipulation framework that, performs category classification and landmark detection based on an image of a garment, followed by a manipulation strategy. The process is performed iteratively to achieve a stretching task where the goal is to bring a crumbled cloth into a stretched out position. We extensively evaluate our learning pipeline and show a detailed evaluation of our framework on different types of garments in a total of 140 recorded and available experiments. Finally, we demonstrate the benefits of training a network on augmented fashion data over using a small robotic-specific data set.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/17298806221110445</doi><orcidid>https://orcid.org/0000-0003-3827-3824</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1729-8806 |
ispartof | International journal of advanced robotic systems, 2022-07, Vol.19 (4) |
issn | 1729-8806 1729-8814 1729-8814 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3f0877373643464d8872b59c4b5fb3ef |
source | SAGE Journals Open Access |
subjects | classification Cloth data augmentation Datasets Deep learning Evaluation garment manipulation Garments Image classification Image manipulation Machine learning vision for robotics |
title | Cloth manipulation based on category classification and landmark detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloth%20manipulation%20based%20on%20category%20classification%20and%20landmark%20detection&rft.jtitle=International%20journal%20of%20advanced%20robotic%20systems&rft.au=Gustavsson,%20Oscar&rft.date=2022-07-01&rft.volume=19&rft.issue=4&rft.issn=1729-8806&rft.eissn=1729-8814&rft_id=info:doi/10.1177/17298806221110445&rft_dat=%3Cproquest_doaj_%3E2708693237%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708693237&rft_id=info:pmid/&rft_sage_id=10.1177_17298806221110445&rfr_iscdi=true |