Loading…

Cloth manipulation based on category classification and landmark detection

Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were cr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced robotic systems 2022-07, Vol.19 (4)
Main Authors: Gustavsson, Oscar, Ziegler, Thomas, Welle, Michael C, Bütepage, Judith, Varava, Anastasiia, Kragic, Danica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3
cites cdi_FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3
container_end_page
container_issue 4
container_start_page
container_title International journal of advanced robotic systems
container_volume 19
creator Gustavsson, Oscar
Ziegler, Thomas
Welle, Michael C
Bütepage, Judith
Varava, Anastasiia
Kragic, Danica
description Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were created. In this work, we leverage these advances in deep learning to perform cloth manipulation. We propose a full cloth manipulation framework that, performs category classification and landmark detection based on an image of a garment, followed by a manipulation strategy. The process is performed iteratively to achieve a stretching task where the goal is to bring a crumbled cloth into a stretched out position. We extensively evaluate our learning pipeline and show a detailed evaluation of our framework on different types of garments in a total of 140 recorded and available experiments. Finally, we demonstrate the benefits of training a network on augmented fashion data over using a small robotic-specific data set.
doi_str_mv 10.1177/17298806221110445
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f0877373643464d8872b59c4b5fb3ef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_17298806221110445</sage_id><doaj_id>oai_doaj_org_article_3f0877373643464d8872b59c4b5fb3ef</doaj_id><sourcerecordid>2708693237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoKNUf4G3B82q-kz1K_Ubwol7DbD7arWtTky3ivzd1iyJiDpPhzTvPTBiEjgk-JUSpM6JoozWWlBJCMOdiBx1stFprwne_cyz30VHOC7w5CotGHaC7aR-HefUKy2617mHo4rJqIXtXlcTC4GcxfVS2h5y70NnRAEtX9SW8QnqpnB-83ciHaC9An_3R9p6gp6vLx-lNff9wfTs9v68tF81QE-ExJZjiANgChEZ42TpFW8wocYJZ12KpgCrc8BA4b4njoDkL0nJSHtkE3Y5cF2FhVqkrY3yYCJ35EmKaGUhDZ3tvWMBaKaaY5IxL7rQufURjeStCy3worHpk5Xe_Wre_aBfd8_kX7WWYG0YkbUTxn4z-VYpva58Hs4jrtCzfNWVgLRtGS7cJIqPLpphz8uGbS7DZbMz82VipOd1OAjP_Q_2_4BNhb5SO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708693237</pqid></control><display><type>article</type><title>Cloth manipulation based on category classification and landmark detection</title><source>SAGE Journals Open Access</source><creator>Gustavsson, Oscar ; Ziegler, Thomas ; Welle, Michael C ; Bütepage, Judith ; Varava, Anastasiia ; Kragic, Danica</creator><creatorcontrib>Gustavsson, Oscar ; Ziegler, Thomas ; Welle, Michael C ; Bütepage, Judith ; Varava, Anastasiia ; Kragic, Danica</creatorcontrib><description>Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were created. In this work, we leverage these advances in deep learning to perform cloth manipulation. We propose a full cloth manipulation framework that, performs category classification and landmark detection based on an image of a garment, followed by a manipulation strategy. The process is performed iteratively to achieve a stretching task where the goal is to bring a crumbled cloth into a stretched out position. We extensively evaluate our learning pipeline and show a detailed evaluation of our framework on different types of garments in a total of 140 recorded and available experiments. Finally, we demonstrate the benefits of training a network on augmented fashion data over using a small robotic-specific data set.</description><identifier>ISSN: 1729-8806</identifier><identifier>ISSN: 1729-8814</identifier><identifier>EISSN: 1729-8814</identifier><identifier>DOI: 10.1177/17298806221110445</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>classification ; Cloth ; data augmentation ; Datasets ; Deep learning ; Evaluation ; garment manipulation ; Garments ; Image classification ; Image manipulation ; Machine learning ; vision for robotics</subject><ispartof>International journal of advanced robotic systems, 2022-07, Vol.19 (4)</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3</citedby><cites>FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3</cites><orcidid>0000-0003-3827-3824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/17298806221110445$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/17298806221110445$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,21945,27830,27901,27902,44921,45309</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-316295$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gustavsson, Oscar</creatorcontrib><creatorcontrib>Ziegler, Thomas</creatorcontrib><creatorcontrib>Welle, Michael C</creatorcontrib><creatorcontrib>Bütepage, Judith</creatorcontrib><creatorcontrib>Varava, Anastasiia</creatorcontrib><creatorcontrib>Kragic, Danica</creatorcontrib><title>Cloth manipulation based on category classification and landmark detection</title><title>International journal of advanced robotic systems</title><description>Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were created. In this work, we leverage these advances in deep learning to perform cloth manipulation. We propose a full cloth manipulation framework that, performs category classification and landmark detection based on an image of a garment, followed by a manipulation strategy. The process is performed iteratively to achieve a stretching task where the goal is to bring a crumbled cloth into a stretched out position. We extensively evaluate our learning pipeline and show a detailed evaluation of our framework on different types of garments in a total of 140 recorded and available experiments. Finally, we demonstrate the benefits of training a network on augmented fashion data over using a small robotic-specific data set.</description><subject>classification</subject><subject>Cloth</subject><subject>data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Evaluation</subject><subject>garment manipulation</subject><subject>Garments</subject><subject>Image classification</subject><subject>Image manipulation</subject><subject>Machine learning</subject><subject>vision for robotics</subject><issn>1729-8806</issn><issn>1729-8814</issn><issn>1729-8814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1LAzEQhoMoKNUf4G3B82q-kz1K_Ubwol7DbD7arWtTky3ivzd1iyJiDpPhzTvPTBiEjgk-JUSpM6JoozWWlBJCMOdiBx1stFprwne_cyz30VHOC7w5CotGHaC7aR-HefUKy2617mHo4rJqIXtXlcTC4GcxfVS2h5y70NnRAEtX9SW8QnqpnB-83ciHaC9An_3R9p6gp6vLx-lNff9wfTs9v68tF81QE-ExJZjiANgChEZ42TpFW8wocYJZ12KpgCrc8BA4b4njoDkL0nJSHtkE3Y5cF2FhVqkrY3yYCJ35EmKaGUhDZ3tvWMBaKaaY5IxL7rQufURjeStCy3worHpk5Xe_Wre_aBfd8_kX7WWYG0YkbUTxn4z-VYpva58Hs4jrtCzfNWVgLRtGS7cJIqPLpphz8uGbS7DZbMz82VipOd1OAjP_Q_2_4BNhb5SO</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Gustavsson, Oscar</creator><creator>Ziegler, Thomas</creator><creator>Welle, Michael C</creator><creator>Bütepage, Judith</creator><creator>Varava, Anastasiia</creator><creator>Kragic, Danica</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3827-3824</orcidid></search><sort><creationdate>20220701</creationdate><title>Cloth manipulation based on category classification and landmark detection</title><author>Gustavsson, Oscar ; Ziegler, Thomas ; Welle, Michael C ; Bütepage, Judith ; Varava, Anastasiia ; Kragic, Danica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>classification</topic><topic>Cloth</topic><topic>data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Evaluation</topic><topic>garment manipulation</topic><topic>Garments</topic><topic>Image classification</topic><topic>Image manipulation</topic><topic>Machine learning</topic><topic>vision for robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gustavsson, Oscar</creatorcontrib><creatorcontrib>Ziegler, Thomas</creatorcontrib><creatorcontrib>Welle, Michael C</creatorcontrib><creatorcontrib>Bütepage, Judith</creatorcontrib><creatorcontrib>Varava, Anastasiia</creatorcontrib><creatorcontrib>Kragic, Danica</creatorcontrib><collection>SAGE Journals Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of advanced robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gustavsson, Oscar</au><au>Ziegler, Thomas</au><au>Welle, Michael C</au><au>Bütepage, Judith</au><au>Varava, Anastasiia</au><au>Kragic, Danica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloth manipulation based on category classification and landmark detection</atitle><jtitle>International journal of advanced robotic systems</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><issn>1729-8806</issn><issn>1729-8814</issn><eissn>1729-8814</eissn><abstract>Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were created. In this work, we leverage these advances in deep learning to perform cloth manipulation. We propose a full cloth manipulation framework that, performs category classification and landmark detection based on an image of a garment, followed by a manipulation strategy. The process is performed iteratively to achieve a stretching task where the goal is to bring a crumbled cloth into a stretched out position. We extensively evaluate our learning pipeline and show a detailed evaluation of our framework on different types of garments in a total of 140 recorded and available experiments. Finally, we demonstrate the benefits of training a network on augmented fashion data over using a small robotic-specific data set.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/17298806221110445</doi><orcidid>https://orcid.org/0000-0003-3827-3824</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1729-8806
ispartof International journal of advanced robotic systems, 2022-07, Vol.19 (4)
issn 1729-8806
1729-8814
1729-8814
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3f0877373643464d8872b59c4b5fb3ef
source SAGE Journals Open Access
subjects classification
Cloth
data augmentation
Datasets
Deep learning
Evaluation
garment manipulation
Garments
Image classification
Image manipulation
Machine learning
vision for robotics
title Cloth manipulation based on category classification and landmark detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloth%20manipulation%20based%20on%20category%20classification%20and%20landmark%20detection&rft.jtitle=International%20journal%20of%20advanced%20robotic%20systems&rft.au=Gustavsson,%20Oscar&rft.date=2022-07-01&rft.volume=19&rft.issue=4&rft.issn=1729-8806&rft.eissn=1729-8814&rft_id=info:doi/10.1177/17298806221110445&rft_dat=%3Cproquest_doaj_%3E2708693237%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-15e021020fa0caaf95e6bd72b0321d53cdb067a27094ff44b1d4a843f6c41cdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708693237&rft_id=info:pmid/&rft_sage_id=10.1177_17298806221110445&rfr_iscdi=true