Loading…

Determining growth rates from bright-field images of budding cells through identifying overlaps

Much of biochemical regulation ultimately controls growth rate, particularly in microbes. Although time-lapse microscopy visualises cells, determining their growth rates is challenging, particularly for those that divide asymmetrically, like , because cells often overlap in images. Here, we present...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2023-07, Vol.12
Main Authors: Pietsch, Julian M J, Muñoz, Alán F, Adjavon, Diane-Yayra A, Farquhar, Iseabail, Clark, Ivan B N, Swain, Peter S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4502-becc3250f5b95a170db5b18345a198b1366e7f5a550657d7c920b5a97888f5923
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 12
creator Pietsch, Julian M J
Muñoz, Alán F
Adjavon, Diane-Yayra A
Farquhar, Iseabail
Clark, Ivan B N
Swain, Peter S
description Much of biochemical regulation ultimately controls growth rate, particularly in microbes. Although time-lapse microscopy visualises cells, determining their growth rates is challenging, particularly for those that divide asymmetrically, like , because cells often overlap in images. Here, we present the Birth Annotator for Budding Yeast (BABY), an algorithm to determine single-cell growth rates from label-free images. Using a convolutional neural network, BABY resolves overlaps through separating cells by size and assigns buds to mothers by identifying bud necks. BABY uses machine learning to track cells and determine lineages and estimates growth rates as the rates of change of volumes. Using BABY and a microfluidic device, we show that bud growth is likely first sizer- then timer-controlled, that the nuclear concentration of Sfp1, a regulator of ribosome biogenesis, varies before the growth rate does, and that growth rate can be used for real-time control. By estimating single-cell growth rates and so fitness, BABY should generate much biological insight.
doi_str_mv 10.7554/eLife.79812
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f0b14850ec2428783075add84483be5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758504347</galeid><doaj_id>oai_doaj_org_article_3f0b14850ec2428783075add84483be5</doaj_id><sourcerecordid>A758504347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4502-becc3250f5b95a170db5b18345a198b1366e7f5a550657d7c920b5a97888f5923</originalsourceid><addsrcrecordid>eNptksuLFDEQhxtR3GXdk3dp8KLIjHlO0idZ1tfAgOADvIU8Kj0Zujtr0r26_73pmXXdEZNDkqqvfpUqqqqeYrQUnLPXsAkelqKRmDyoTgniaIEk-_7w3v2kOs95h8oSTErcPK5OqGBYyFVzWqm3MELqwxCGtm5T_Dlu66RHyLVPsa9NCu12XPgAnatDr9viiL42k3NzgIWuy_W4TXFqt3VwMIzB38yeeA2p01f5SfXI6y7D-e15Vn17_-7r5cfF5tOH9eXFZmEZR2RhwFpKOPLcNFxjgZzhBkvKyqORBtPVCoTnmnO04sIJ2xBkuG6ElNLzhtCzan3QdVHv1FUqf003Kuqg9oaYWqXTGGwHinpkMJMcgSWMSCEpElw7JxmT1AAvWm8OWleT6cHZUlXS3ZHosWcIW9XGa4URFZgQURRe3Cqk-GOCPKo-5LlZeoA4ZUUk5UQIyXBBn_-D7uKUhtKrQjGGOBUN-ku1ulQQBh9LYjuLqgvBSy2Msjnt8j9U2Q76YOMAPhT7UcDLo4DCjPBrbPWUs1p_-XzMvjqwNsWcE_i7hmCk5llU-1lU-1ks9LP7Pbxj_0we_Q0ZGdeS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844053790</pqid></control><display><type>article</type><title>Determining growth rates from bright-field images of budding cells through identifying overlaps</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Pietsch, Julian M J ; Muñoz, Alán F ; Adjavon, Diane-Yayra A ; Farquhar, Iseabail ; Clark, Ivan B N ; Swain, Peter S</creator><creatorcontrib>Pietsch, Julian M J ; Muñoz, Alán F ; Adjavon, Diane-Yayra A ; Farquhar, Iseabail ; Clark, Ivan B N ; Swain, Peter S</creatorcontrib><description>Much of biochemical regulation ultimately controls growth rate, particularly in microbes. Although time-lapse microscopy visualises cells, determining their growth rates is challenging, particularly for those that divide asymmetrically, like , because cells often overlap in images. Here, we present the Birth Annotator for Budding Yeast (BABY), an algorithm to determine single-cell growth rates from label-free images. Using a convolutional neural network, BABY resolves overlaps through separating cells by size and assigns buds to mothers by identifying bud necks. BABY uses machine learning to track cells and determine lineages and estimates growth rates as the rates of change of volumes. Using BABY and a microfluidic device, we show that bud growth is likely first sizer- then timer-controlled, that the nuclear concentration of Sfp1, a regulator of ribosome biogenesis, varies before the growth rate does, and that growth rate can be used for real-time control. By estimating single-cell growth rates and so fitness, BABY should generate much biological insight.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.79812</identifier><identifier>PMID: 37417869</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Algorithms ; budding cells ; Cell Biology ; Cell cycle ; Cell Division ; Cell growth ; Cell size ; Computational and Systems Biology ; Growth rate ; image processing ; Machine learning ; Microfluidics ; Microscopy ; Mothers ; Neural networks ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; single cells ; Time series ; time-lapse microscopy ; Tools and Resources ; Yeast</subject><ispartof>eLife, 2023-07, Vol.12</ispartof><rights>2023, Pietsch et al.</rights><rights>COPYRIGHT 2023 eLife Science Publications, Ltd.</rights><rights>2023, Pietsch et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023, Pietsch et al 2023 Pietsch et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4502-becc3250f5b95a170db5b18345a198b1366e7f5a550657d7c920b5a97888f5923</cites><orcidid>0000-0002-9992-2384 ; 0000-0001-7489-8587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2844053790/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2844053790?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25740,27911,27912,36999,37000,44577,53778,53780,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37417869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pietsch, Julian M J</creatorcontrib><creatorcontrib>Muñoz, Alán F</creatorcontrib><creatorcontrib>Adjavon, Diane-Yayra A</creatorcontrib><creatorcontrib>Farquhar, Iseabail</creatorcontrib><creatorcontrib>Clark, Ivan B N</creatorcontrib><creatorcontrib>Swain, Peter S</creatorcontrib><title>Determining growth rates from bright-field images of budding cells through identifying overlaps</title><title>eLife</title><addtitle>Elife</addtitle><description>Much of biochemical regulation ultimately controls growth rate, particularly in microbes. Although time-lapse microscopy visualises cells, determining their growth rates is challenging, particularly for those that divide asymmetrically, like , because cells often overlap in images. Here, we present the Birth Annotator for Budding Yeast (BABY), an algorithm to determine single-cell growth rates from label-free images. Using a convolutional neural network, BABY resolves overlaps through separating cells by size and assigns buds to mothers by identifying bud necks. BABY uses machine learning to track cells and determine lineages and estimates growth rates as the rates of change of volumes. Using BABY and a microfluidic device, we show that bud growth is likely first sizer- then timer-controlled, that the nuclear concentration of Sfp1, a regulator of ribosome biogenesis, varies before the growth rate does, and that growth rate can be used for real-time control. By estimating single-cell growth rates and so fitness, BABY should generate much biological insight.</description><subject>Algorithms</subject><subject>budding cells</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell Division</subject><subject>Cell growth</subject><subject>Cell size</subject><subject>Computational and Systems Biology</subject><subject>Growth rate</subject><subject>image processing</subject><subject>Machine learning</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Mothers</subject><subject>Neural networks</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>single cells</subject><subject>Time series</subject><subject>time-lapse microscopy</subject><subject>Tools and Resources</subject><subject>Yeast</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksuLFDEQhxtR3GXdk3dp8KLIjHlO0idZ1tfAgOADvIU8Kj0Zujtr0r26_73pmXXdEZNDkqqvfpUqqqqeYrQUnLPXsAkelqKRmDyoTgniaIEk-_7w3v2kOs95h8oSTErcPK5OqGBYyFVzWqm3MELqwxCGtm5T_Dlu66RHyLVPsa9NCu12XPgAnatDr9viiL42k3NzgIWuy_W4TXFqt3VwMIzB38yeeA2p01f5SfXI6y7D-e15Vn17_-7r5cfF5tOH9eXFZmEZR2RhwFpKOPLcNFxjgZzhBkvKyqORBtPVCoTnmnO04sIJ2xBkuG6ElNLzhtCzan3QdVHv1FUqf003Kuqg9oaYWqXTGGwHinpkMJMcgSWMSCEpElw7JxmT1AAvWm8OWleT6cHZUlXS3ZHosWcIW9XGa4URFZgQURRe3Cqk-GOCPKo-5LlZeoA4ZUUk5UQIyXBBn_-D7uKUhtKrQjGGOBUN-ku1ulQQBh9LYjuLqgvBSy2Msjnt8j9U2Q76YOMAPhT7UcDLo4DCjPBrbPWUs1p_-XzMvjqwNsWcE_i7hmCk5llU-1lU-1ks9LP7Pbxj_0we_Q0ZGdeS</recordid><startdate>20230707</startdate><enddate>20230707</enddate><creator>Pietsch, Julian M J</creator><creator>Muñoz, Alán F</creator><creator>Adjavon, Diane-Yayra A</creator><creator>Farquhar, Iseabail</creator><creator>Clark, Ivan B N</creator><creator>Swain, Peter S</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9992-2384</orcidid><orcidid>https://orcid.org/0000-0001-7489-8587</orcidid></search><sort><creationdate>20230707</creationdate><title>Determining growth rates from bright-field images of budding cells through identifying overlaps</title><author>Pietsch, Julian M J ; Muñoz, Alán F ; Adjavon, Diane-Yayra A ; Farquhar, Iseabail ; Clark, Ivan B N ; Swain, Peter S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4502-becc3250f5b95a170db5b18345a198b1366e7f5a550657d7c920b5a97888f5923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>budding cells</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell Division</topic><topic>Cell growth</topic><topic>Cell size</topic><topic>Computational and Systems Biology</topic><topic>Growth rate</topic><topic>image processing</topic><topic>Machine learning</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Mothers</topic><topic>Neural networks</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>single cells</topic><topic>Time series</topic><topic>time-lapse microscopy</topic><topic>Tools and Resources</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pietsch, Julian M J</creatorcontrib><creatorcontrib>Muñoz, Alán F</creatorcontrib><creatorcontrib>Adjavon, Diane-Yayra A</creatorcontrib><creatorcontrib>Farquhar, Iseabail</creatorcontrib><creatorcontrib>Clark, Ivan B N</creatorcontrib><creatorcontrib>Swain, Peter S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pietsch, Julian M J</au><au>Muñoz, Alán F</au><au>Adjavon, Diane-Yayra A</au><au>Farquhar, Iseabail</au><au>Clark, Ivan B N</au><au>Swain, Peter S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining growth rates from bright-field images of budding cells through identifying overlaps</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2023-07-07</date><risdate>2023</risdate><volume>12</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Much of biochemical regulation ultimately controls growth rate, particularly in microbes. Although time-lapse microscopy visualises cells, determining their growth rates is challenging, particularly for those that divide asymmetrically, like , because cells often overlap in images. Here, we present the Birth Annotator for Budding Yeast (BABY), an algorithm to determine single-cell growth rates from label-free images. Using a convolutional neural network, BABY resolves overlaps through separating cells by size and assigns buds to mothers by identifying bud necks. BABY uses machine learning to track cells and determine lineages and estimates growth rates as the rates of change of volumes. Using BABY and a microfluidic device, we show that bud growth is likely first sizer- then timer-controlled, that the nuclear concentration of Sfp1, a regulator of ribosome biogenesis, varies before the growth rate does, and that growth rate can be used for real-time control. By estimating single-cell growth rates and so fitness, BABY should generate much biological insight.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>37417869</pmid><doi>10.7554/eLife.79812</doi><orcidid>https://orcid.org/0000-0002-9992-2384</orcidid><orcidid>https://orcid.org/0000-0001-7489-8587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2023-07, Vol.12
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3f0b14850ec2428783075add84483be5
source Open Access: PubMed Central; Publicly Available Content Database
subjects Algorithms
budding cells
Cell Biology
Cell cycle
Cell Division
Cell growth
Cell size
Computational and Systems Biology
Growth rate
image processing
Machine learning
Microfluidics
Microscopy
Mothers
Neural networks
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - genetics
single cells
Time series
time-lapse microscopy
Tools and Resources
Yeast
title Determining growth rates from bright-field images of budding cells through identifying overlaps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20growth%20rates%20from%20bright-field%20images%20of%20budding%20cells%20through%20identifying%20overlaps&rft.jtitle=eLife&rft.au=Pietsch,%20Julian%20M%20J&rft.date=2023-07-07&rft.volume=12&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.79812&rft_dat=%3Cgale_doaj_%3EA758504347%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4502-becc3250f5b95a170db5b18345a198b1366e7f5a550657d7c920b5a97888f5923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844053790&rft_id=info:pmid/37417869&rft_galeid=A758504347&rfr_iscdi=true