Loading…
Multi-layer graph attention neural networks for accurate drug-target interaction mapping
In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach—Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively h...
Saved in:
Published in: | Scientific reports 2024-10, Vol.14 (1), p.26119-8, Article 26119 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-bacd1bcaa23c7d61a4ccb78c71233a988198019d45f172ff73e79f2bb868fb853 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 26119 |
container_title | Scientific reports |
container_volume | 14 |
creator | Lu, Qianwen Zhou, Zhiheng Wang, Qi |
description | In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach—Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively harnesses multi-source information to enhance prediction accuracy. MLGANN not only strides forward in constructing a multi-layer DTI network by capturing both direct interactions between drugs and targets as well as their multi-level information but also amalgamates Graph Convolutional Networks (GCN) with a self-attention mechanism to comprehensively integrate diverse data sources. This method exhibited significant performance surpassing existing approaches in comparative experiments, underscoring its immense potential in elevating the efficiency and accuracy of DTI predictions. More importantly, this study accentuates the significance of considering multi-source data information and network heterogeneity in the drug discovery process, offering new perspectives and tools for future pharmaceutical research. |
doi_str_mv | 10.1038/s41598-024-75742-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f1c75917d084435a5f39c6dcc75fbad</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3f1c75917d084435a5f39c6dcc75fbad</doaj_id><sourcerecordid>3122645376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-bacd1bcaa23c7d61a4ccb78c71233a988198019d45f172ff73e79f2bb868fb853</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi1ERau2L8ACZcnG4GtsrxCquFRqxQYkdtbEsdMccuJgO0V9e8xJW7UbvBlr5p9_xv4Qek3JO0q4fp8FlUZjwgRWUgmG6Qt0woiQmHHGXj65H6PznHekHsmMoOYVOuZGKE2YOkE_r9epjHiCO5-aIcFy00Apfi5jnJvZrwmmGsqfmH7lJsTUgHM1WXzTp3XABdLgSzPOxSdwh6Y9LMs4D2foKMCU_fl9PEU_Pn_6fvEVX337cnnx8Qq7ukTBHbiedg6Acaf6loJwrlPaKco4B6M1NZpQ0wsZqGIhKO6VCazrdKtDpyU_RZebbx9hZ5c07iHd2QijPSRiGiykMrrJWx6oU9JQ1RMtBJcgAzeu7V3Nhg766vVh81rWbu97V7-hvv-Z6fPKPN7YId5aSiWrNFR1eHvvkOLv1edi92N2fppg9nHNllPGWiG5aquUbVKXYs7Jh8c5lNh_iO2G2FbE9oDY0tr05umGjy0PQKuAb4JcS_Pgk93FNc2VwP9s_wIcybQc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122645376</pqid></control><display><type>article</type><title>Multi-layer graph attention neural networks for accurate drug-target interaction mapping</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lu, Qianwen ; Zhou, Zhiheng ; Wang, Qi</creator><creatorcontrib>Lu, Qianwen ; Zhou, Zhiheng ; Wang, Qi</creatorcontrib><description>In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach—Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively harnesses multi-source information to enhance prediction accuracy. MLGANN not only strides forward in constructing a multi-layer DTI network by capturing both direct interactions between drugs and targets as well as their multi-level information but also amalgamates Graph Convolutional Networks (GCN) with a self-attention mechanism to comprehensively integrate diverse data sources. This method exhibited significant performance surpassing existing approaches in comparative experiments, underscoring its immense potential in elevating the efficiency and accuracy of DTI predictions. More importantly, this study accentuates the significance of considering multi-source data information and network heterogeneity in the drug discovery process, offering new perspectives and tools for future pharmaceutical research.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-75742-1</identifier><identifier>PMID: 39478027</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/114/2164 ; 631/114/2397 ; 631/114/2408 ; Drug Discovery - methods ; Drug Repositioning - methods ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Neural Networks, Computer ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2024-10, Vol.14 (1), p.26119-8, Article 26119</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c394t-bacd1bcaa23c7d61a4ccb78c71233a988198019d45f172ff73e79f2bb868fb853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525987/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525987/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39478027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Qianwen</creatorcontrib><creatorcontrib>Zhou, Zhiheng</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><title>Multi-layer graph attention neural networks for accurate drug-target interaction mapping</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach—Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively harnesses multi-source information to enhance prediction accuracy. MLGANN not only strides forward in constructing a multi-layer DTI network by capturing both direct interactions between drugs and targets as well as their multi-level information but also amalgamates Graph Convolutional Networks (GCN) with a self-attention mechanism to comprehensively integrate diverse data sources. This method exhibited significant performance surpassing existing approaches in comparative experiments, underscoring its immense potential in elevating the efficiency and accuracy of DTI predictions. More importantly, this study accentuates the significance of considering multi-source data information and network heterogeneity in the drug discovery process, offering new perspectives and tools for future pharmaceutical research.</description><subject>631/114/1305</subject><subject>631/114/2164</subject><subject>631/114/2397</subject><subject>631/114/2408</subject><subject>Drug Discovery - methods</subject><subject>Drug Repositioning - methods</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Neural Networks, Computer</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhi1ERau2L8ACZcnG4GtsrxCquFRqxQYkdtbEsdMccuJgO0V9e8xJW7UbvBlr5p9_xv4Qek3JO0q4fp8FlUZjwgRWUgmG6Qt0woiQmHHGXj65H6PznHekHsmMoOYVOuZGKE2YOkE_r9epjHiCO5-aIcFy00Apfi5jnJvZrwmmGsqfmH7lJsTUgHM1WXzTp3XABdLgSzPOxSdwh6Y9LMs4D2foKMCU_fl9PEU_Pn_6fvEVX337cnnx8Qq7ukTBHbiedg6Acaf6loJwrlPaKco4B6M1NZpQ0wsZqGIhKO6VCazrdKtDpyU_RZebbx9hZ5c07iHd2QijPSRiGiykMrrJWx6oU9JQ1RMtBJcgAzeu7V3Nhg766vVh81rWbu97V7-hvv-Z6fPKPN7YId5aSiWrNFR1eHvvkOLv1edi92N2fppg9nHNllPGWiG5aquUbVKXYs7Jh8c5lNh_iO2G2FbE9oDY0tr05umGjy0PQKuAb4JcS_Pgk93FNc2VwP9s_wIcybQc</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Lu, Qianwen</creator><creator>Zhou, Zhiheng</creator><creator>Wang, Qi</creator><general>Nature Publishing Group UK</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241030</creationdate><title>Multi-layer graph attention neural networks for accurate drug-target interaction mapping</title><author>Lu, Qianwen ; Zhou, Zhiheng ; Wang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-bacd1bcaa23c7d61a4ccb78c71233a988198019d45f172ff73e79f2bb868fb853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/1305</topic><topic>631/114/2164</topic><topic>631/114/2397</topic><topic>631/114/2408</topic><topic>Drug Discovery - methods</topic><topic>Drug Repositioning - methods</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Neural Networks, Computer</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Qianwen</creatorcontrib><creatorcontrib>Zhou, Zhiheng</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Qianwen</au><au>Zhou, Zhiheng</au><au>Wang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-layer graph attention neural networks for accurate drug-target interaction mapping</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-10-30</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>26119</spage><epage>8</epage><pages>26119-8</pages><artnum>26119</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach—Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively harnesses multi-source information to enhance prediction accuracy. MLGANN not only strides forward in constructing a multi-layer DTI network by capturing both direct interactions between drugs and targets as well as their multi-level information but also amalgamates Graph Convolutional Networks (GCN) with a self-attention mechanism to comprehensively integrate diverse data sources. This method exhibited significant performance surpassing existing approaches in comparative experiments, underscoring its immense potential in elevating the efficiency and accuracy of DTI predictions. More importantly, this study accentuates the significance of considering multi-source data information and network heterogeneity in the drug discovery process, offering new perspectives and tools for future pharmaceutical research.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39478027</pmid><doi>10.1038/s41598-024-75742-1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-10, Vol.14 (1), p.26119-8, Article 26119 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3f1c75917d084435a5f39c6dcc75fbad |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/1305 631/114/2164 631/114/2397 631/114/2408 Drug Discovery - methods Drug Repositioning - methods Humanities and Social Sciences Humans multidisciplinary Neural Networks, Computer Science Science (multidisciplinary) |
title | Multi-layer graph attention neural networks for accurate drug-target interaction mapping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-layer%20graph%20attention%20neural%20networks%20for%20accurate%20drug-target%20interaction%20mapping&rft.jtitle=Scientific%20reports&rft.au=Lu,%20Qianwen&rft.date=2024-10-30&rft.volume=14&rft.issue=1&rft.spage=26119&rft.epage=8&rft.pages=26119-8&rft.artnum=26119&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-75742-1&rft_dat=%3Cproquest_doaj_%3E3122645376%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-bacd1bcaa23c7d61a4ccb78c71233a988198019d45f172ff73e79f2bb868fb853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122645376&rft_id=info:pmid/39478027&rfr_iscdi=true |