Loading…

Multi-layer graph attention neural networks for accurate drug-target interaction mapping

In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach—Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively h...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-10, Vol.14 (1), p.26119-8, Article 26119
Main Authors: Lu, Qianwen, Zhou, Zhiheng, Wang, Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c394t-bacd1bcaa23c7d61a4ccb78c71233a988198019d45f172ff73e79f2bb868fb853
container_end_page 8
container_issue 1
container_start_page 26119
container_title Scientific reports
container_volume 14
creator Lu, Qianwen
Zhou, Zhiheng
Wang, Qi
description In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach—Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively harnesses multi-source information to enhance prediction accuracy. MLGANN not only strides forward in constructing a multi-layer DTI network by capturing both direct interactions between drugs and targets as well as their multi-level information but also amalgamates Graph Convolutional Networks (GCN) with a self-attention mechanism to comprehensively integrate diverse data sources. This method exhibited significant performance surpassing existing approaches in comparative experiments, underscoring its immense potential in elevating the efficiency and accuracy of DTI predictions. More importantly, this study accentuates the significance of considering multi-source data information and network heterogeneity in the drug discovery process, offering new perspectives and tools for future pharmaceutical research.
doi_str_mv 10.1038/s41598-024-75742-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f1c75917d084435a5f39c6dcc75fbad</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3f1c75917d084435a5f39c6dcc75fbad</doaj_id><sourcerecordid>3122645376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-bacd1bcaa23c7d61a4ccb78c71233a988198019d45f172ff73e79f2bb868fb853</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi1ERau2L8ACZcnG4GtsrxCquFRqxQYkdtbEsdMccuJgO0V9e8xJW7UbvBlr5p9_xv4Qek3JO0q4fp8FlUZjwgRWUgmG6Qt0woiQmHHGXj65H6PznHekHsmMoOYVOuZGKE2YOkE_r9epjHiCO5-aIcFy00Apfi5jnJvZrwmmGsqfmH7lJsTUgHM1WXzTp3XABdLgSzPOxSdwh6Y9LMs4D2foKMCU_fl9PEU_Pn_6fvEVX337cnnx8Qq7ukTBHbiedg6Acaf6loJwrlPaKco4B6M1NZpQ0wsZqGIhKO6VCazrdKtDpyU_RZebbx9hZ5c07iHd2QijPSRiGiykMrrJWx6oU9JQ1RMtBJcgAzeu7V3Nhg766vVh81rWbu97V7-hvv-Z6fPKPN7YId5aSiWrNFR1eHvvkOLv1edi92N2fppg9nHNllPGWiG5aquUbVKXYs7Jh8c5lNh_iO2G2FbE9oDY0tr05umGjy0PQKuAb4JcS_Pgk93FNc2VwP9s_wIcybQc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122645376</pqid></control><display><type>article</type><title>Multi-layer graph attention neural networks for accurate drug-target interaction mapping</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lu, Qianwen ; Zhou, Zhiheng ; Wang, Qi</creator><creatorcontrib>Lu, Qianwen ; Zhou, Zhiheng ; Wang, Qi</creatorcontrib><description>In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach—Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively harnesses multi-source information to enhance prediction accuracy. MLGANN not only strides forward in constructing a multi-layer DTI network by capturing both direct interactions between drugs and targets as well as their multi-level information but also amalgamates Graph Convolutional Networks (GCN) with a self-attention mechanism to comprehensively integrate diverse data sources. This method exhibited significant performance surpassing existing approaches in comparative experiments, underscoring its immense potential in elevating the efficiency and accuracy of DTI predictions. More importantly, this study accentuates the significance of considering multi-source data information and network heterogeneity in the drug discovery process, offering new perspectives and tools for future pharmaceutical research.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-75742-1</identifier><identifier>PMID: 39478027</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/114/2164 ; 631/114/2397 ; 631/114/2408 ; Drug Discovery - methods ; Drug Repositioning - methods ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Neural Networks, Computer ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2024-10, Vol.14 (1), p.26119-8, Article 26119</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c394t-bacd1bcaa23c7d61a4ccb78c71233a988198019d45f172ff73e79f2bb868fb853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525987/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525987/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39478027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Qianwen</creatorcontrib><creatorcontrib>Zhou, Zhiheng</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><title>Multi-layer graph attention neural networks for accurate drug-target interaction mapping</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach—Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively harnesses multi-source information to enhance prediction accuracy. MLGANN not only strides forward in constructing a multi-layer DTI network by capturing both direct interactions between drugs and targets as well as their multi-level information but also amalgamates Graph Convolutional Networks (GCN) with a self-attention mechanism to comprehensively integrate diverse data sources. This method exhibited significant performance surpassing existing approaches in comparative experiments, underscoring its immense potential in elevating the efficiency and accuracy of DTI predictions. More importantly, this study accentuates the significance of considering multi-source data information and network heterogeneity in the drug discovery process, offering new perspectives and tools for future pharmaceutical research.</description><subject>631/114/1305</subject><subject>631/114/2164</subject><subject>631/114/2397</subject><subject>631/114/2408</subject><subject>Drug Discovery - methods</subject><subject>Drug Repositioning - methods</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Neural Networks, Computer</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhi1ERau2L8ACZcnG4GtsrxCquFRqxQYkdtbEsdMccuJgO0V9e8xJW7UbvBlr5p9_xv4Qek3JO0q4fp8FlUZjwgRWUgmG6Qt0woiQmHHGXj65H6PznHekHsmMoOYVOuZGKE2YOkE_r9epjHiCO5-aIcFy00Apfi5jnJvZrwmmGsqfmH7lJsTUgHM1WXzTp3XABdLgSzPOxSdwh6Y9LMs4D2foKMCU_fl9PEU_Pn_6fvEVX337cnnx8Qq7ukTBHbiedg6Acaf6loJwrlPaKco4B6M1NZpQ0wsZqGIhKO6VCazrdKtDpyU_RZebbx9hZ5c07iHd2QijPSRiGiykMrrJWx6oU9JQ1RMtBJcgAzeu7V3Nhg766vVh81rWbu97V7-hvv-Z6fPKPN7YId5aSiWrNFR1eHvvkOLv1edi92N2fppg9nHNllPGWiG5aquUbVKXYs7Jh8c5lNh_iO2G2FbE9oDY0tr05umGjy0PQKuAb4JcS_Pgk93FNc2VwP9s_wIcybQc</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Lu, Qianwen</creator><creator>Zhou, Zhiheng</creator><creator>Wang, Qi</creator><general>Nature Publishing Group UK</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241030</creationdate><title>Multi-layer graph attention neural networks for accurate drug-target interaction mapping</title><author>Lu, Qianwen ; Zhou, Zhiheng ; Wang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-bacd1bcaa23c7d61a4ccb78c71233a988198019d45f172ff73e79f2bb868fb853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/1305</topic><topic>631/114/2164</topic><topic>631/114/2397</topic><topic>631/114/2408</topic><topic>Drug Discovery - methods</topic><topic>Drug Repositioning - methods</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Neural Networks, Computer</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Qianwen</creatorcontrib><creatorcontrib>Zhou, Zhiheng</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Qianwen</au><au>Zhou, Zhiheng</au><au>Wang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-layer graph attention neural networks for accurate drug-target interaction mapping</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-10-30</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>26119</spage><epage>8</epage><pages>26119-8</pages><artnum>26119</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach—Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively harnesses multi-source information to enhance prediction accuracy. MLGANN not only strides forward in constructing a multi-layer DTI network by capturing both direct interactions between drugs and targets as well as their multi-level information but also amalgamates Graph Convolutional Networks (GCN) with a self-attention mechanism to comprehensively integrate diverse data sources. This method exhibited significant performance surpassing existing approaches in comparative experiments, underscoring its immense potential in elevating the efficiency and accuracy of DTI predictions. More importantly, this study accentuates the significance of considering multi-source data information and network heterogeneity in the drug discovery process, offering new perspectives and tools for future pharmaceutical research.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39478027</pmid><doi>10.1038/s41598-024-75742-1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-10, Vol.14 (1), p.26119-8, Article 26119
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3f1c75917d084435a5f39c6dcc75fbad
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/1305
631/114/2164
631/114/2397
631/114/2408
Drug Discovery - methods
Drug Repositioning - methods
Humanities and Social Sciences
Humans
multidisciplinary
Neural Networks, Computer
Science
Science (multidisciplinary)
title Multi-layer graph attention neural networks for accurate drug-target interaction mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-layer%20graph%20attention%20neural%20networks%20for%20accurate%20drug-target%20interaction%20mapping&rft.jtitle=Scientific%20reports&rft.au=Lu,%20Qianwen&rft.date=2024-10-30&rft.volume=14&rft.issue=1&rft.spage=26119&rft.epage=8&rft.pages=26119-8&rft.artnum=26119&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-75742-1&rft_dat=%3Cproquest_doaj_%3E3122645376%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-bacd1bcaa23c7d61a4ccb78c71233a988198019d45f172ff73e79f2bb868fb853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122645376&rft_id=info:pmid/39478027&rfr_iscdi=true